Synthesis and insecticidal efficacy of pyripyropene derivatives focusing on the C-1, C-7, and C-11 positions' substituent groups

Kimihiko Goto ${ }^{1} \cdot$ Ryo Horikoshi ${ }^{1}$ Masaaki Mitomi ${ }^{1} \cdot$ Kazuhiko Oyama ${ }^{1} \cdot$ Tomoyasu Hirose $^{2} \cdot$ Toshiaki Sunazuka 2. Satoshi Ōmura ${ }^{2}$

Received: 15 January 2018 / Revised: 12 April 2018 / Accepted: 12 April 2018 / Published online: 23 May 2018
© The Author(s) under exclusive licence to the Japan Antibiotics Research Association 2018

Abstract

The C-1, C-7, and C-11 positions of pyripyropene A were chemically modified to improve the insecticidal activity. Some derivatives showed higher insecticidal activities against aphids than pyripyropene A. In particular, the derivative $\mathbf{5 c}$, which possesses three cyclopropyl carbonyl groups at the C-1, C-7, and C-11 positions, had excellent insecticidal activity levels in field and laboratory trials.

Introduction

Pyripyropene (PP) analogs were first isolated as inhibitors toward acyl-CoA:cholesterol O-acyltransferase (ACAT), which is the target of an antilipotropic drug derived from the culture broth of Aspergillus fumigatus FO-1289 by Ōmura et al. at the Kitasato Institute [1-5] and were next isolated from Penicillium coprobium PF1169 as anthelmintic compounds by Meiji Seika Pharma [6]. The structure of PP consists of polyoxygenated mixed polyketide-terpenoid metabolites, which are categorized as meroterpenoids, containing a fused pyridyl α-pyrone moiety and eight contiguous stereocenters [7].

As reported previously, PP derivatives have been investigated as a potent ACAT inhibitor by the Kitasato Institute [8-14]. PP-A (Fig. 1), which is a natural PP analog, has a high level of insecticidal activity against aphids in insecticidal screening tests of Meiji's natural product library [15]. Furthermore, PP-A is highly effective by both foliar application and soil drench, having a narrow

[^0]but unique insecticidal spectrum. Aphids and whiteflies commonly occur and seriously damage a variety of crops. Unlike for lepidopteran pests, few genetically modified crops for controlling these sucking pests are not available, even though some toxins for aphid control have been discovered [16]. Control of these pests has mainly been implemented by chemicals and biological products, such as natural enemies and insecticidal fungi. Recently, because sucking pests are reported to frequently develop resistance to commercial standards, such as neonicotinoid, organophosphate, and synthetic pyrethroid insecticides, new insecticides to control such problematic sucking pests are strongly desired [17, 18]. In the previous toxicological information report for PP-A, no serious issues were observed related to mammalian toxicity [15]. Thus PP-A has promise as a novel insecticide; therefore, its optimization was initiated.

In this report, we investigated the effects on the insecticidal activities caused by chemical modifications at the $\mathrm{C}-1, \mathrm{C}-7$, and $\mathrm{C}-11$ positions to determine the derivatives having stronger activities than PP-A against insects. The insecticidal spectrums of the derivatives with high insecticidal activity were also evaluated. Furthermore, we conducted the field trials of the most promising derivative to confirm the efficacy on practical uses in the field. Since a foliar spray cannot often cover the whole leaves and shoots under field conditions, it is commonly crucial for the agrochemicals to exhibit good systemicity $\mathrm{on} /$ into the leaves or to the young developing leaves to control sucking pests like aphids that preferably infest on young leaves' crops.

pyripyropene A
Fig. 1 Structure of pyripyropene A (PP-A)

Results and Discussion

First, the evaluation of the insecticidal activities of several PP derivatives ($\mathbf{1 a - g}$) with chemical modifications at the C1 , C-7, and C-11 positions, which were reported by the Kitasato Institute [9], was conducted, focusing on the insecticidal activity against Myzus persicae, an important aphid in agriculture.

The structures and insecticidal activities of PP derivatives are shown in Table 1.

Interestingly, the insecticidal activities of $\mathbf{1 f}$ (pyripyropene I, PP-I) [4] and $\mathbf{1 g}$ having propionyl and n-butyryl groups, respectively, at the $\mathrm{C}-1, \mathrm{C}-7$ and $\mathrm{C}-11$ positions are stronger than that of PP-A. Among these derivatives, $\mathbf{1 f}$ (PP-I) had the highest insecticidal activity, at 10 times higher, against aphids. Among the derivatives with other substituent groups at the C-7 position, 1e, having a 3pyridyl carbonyl group, showed relatively high insecticidal activities, while 1a (hydrogen atom), 1b (propionyl group), 1c (n-butyryl group), and 1d (benzoyl group) showed weak insecticidal activities. Thus the substituent groups at the C1 , C-7, and C-11 positions are important for the high insecticidal activity.

Next, the structural conversion of the propionyl group at the $\mathrm{C}-7$ position of $\mathbf{1 f}$ (PP-I) to other acyl groups was attempted to further improve the insecticidal activity. The synthesis of PP derivatives with chemical modifications at the C-7 position, including the key step for regioselective hydrolysis, was reported by our group [8]. The preparation of novel PP derivatives $4 \mathbf{a}-\mathbf{n}$ commenced with the hydrolysis of the triacetate of PP-A, followed by tripropionylation to produce pyripyropene I (1f), which was successively subjected to regioselective hydrolysis at the C7 position using 1.8-diazabicyclo[5.4.0]-undec-7-ene (DBU) to furnish 7-depropionylpyripyropene I (3). Finally, acylation at the $\mathrm{C}-7$ position using a corresponding carboxylic anhydride with triethylamine or carboxylic acid with 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDCI) in the presence of 4-(dimethylamino) pyridine (DMAP) produced $\mathbf{4 a}-\mathbf{n}$ as shown in Scheme 1.

The structures and insecticidal activities of $\mathbf{4 a}-\mathbf{n}$ are shown in Table 2.

The 4 series were evaluated for insecticidal activity against aphids using the same screening assay.

As a result of this study, $\mathbf{4 g}$ (3-pyridylcarbonyl group) showed the highest activity level against aphids. The LC_{90} value of this compound was lower than $\mathbf{4 h}$ (2-pyridylcarbonyl group) and $\mathbf{4 i}$ (4-pyridylcarbonyl group) and was similar to that of the lead compound 1f. Interestingly, introducing some substituents (chloro, trifluoromethyl, or methyl group) on the 3-pyridine ring at the $\mathrm{C}-7$ position of $\mathbf{4 g}$, such as $\mathbf{4 j}, \mathbf{4 k}, \mathbf{4}, \mathbf{4 m}$, or $\mathbf{4 n}$, resulted in a decreased activity level. The conversion to a hydrogen atom (3), acetyl (4a), i-butyryl (4b), pivaloyl (4c), cyclopropylcarbonyl (4d), cyclobutylcarbonyl (4e), or benzoyl group ($\mathbf{4 f}$) at the C-7 position of $\mathbf{1 f}$ did not increase the activity compared with that of $\mathbf{1 f}$. Thus the 3pyridylcarbonyl group could be valuable at the $\mathrm{C}-7$ position in PP derivatives having propionyl groups at the $\mathrm{C}-1$ and $\mathrm{C}-11$ positions.

In parallel with the chemical conversion at the C-7 position of $\mathbf{1 f}$, the novel derivatives $\mathbf{5 a - j}$, which have the same acyl group at the $\mathrm{C}-1, \mathrm{C}-7$, and $\mathrm{C}-11$ positions, were generated by the treatment of 2 with a corresponding carboxylic anhydride with triethylamine or carboxylic acid with EDCI in the presence of DMAP using the synthetic route shown in Scheme 2.

The structures and insecticidal activities of $\mathbf{5 a - j}$ are shown in Table 3.

The 5 series were evaluated for insecticidal activity against aphids using the same screening assay.

As the result of this study, 5c (cyclopropylcarbonyl group) and 5d (cyclobutylcarbonyl group) showed higher activity levels against aphids than lead compound 1f. In contrast, the derivatives possessing a hydrogen atom (2), i butyryl (5a), pivaloyl (5b), cyclohexylcarbonyl (5e), benzoyl (5f), or pyridylcarbonyl group (5g, 5h, 5i, or $\mathbf{5 j}$) at the $\mathrm{C}-1, \mathrm{C}-7$, and $\mathrm{C}-11$ positions did not increase the activity level compared with lead compound $\mathbf{1 f}$. Thus the cyclopropylcarbonyl or cyclobutylcarbonyl group could be valuable at the $\mathrm{C}-1, \mathrm{C}-7$, and $\mathrm{C}-11$ positions in PP derivatives having the same substituents at the $\mathrm{C}-1, \mathrm{C}-7$, and C 11 positions.

Here 5c showed the highest insecticidal activity against aphids and 5c was over 21 times stronger than PP-A based on the LC_{90} values.

Moreover, in evaluating the insecticidal spectra of the derivatives with higher activity than PP-A of $\mathbf{1 f}, \mathbf{4 g}$, and $\mathbf{5 c}$ against other important sucking pests, 5c exhibited higher insecticidal activities against Aphis gossypii and Trialeurodes vaporariorum than PP-A (Table 4). Interestingly, the efficacies of $\mathbf{1 f}$ and $\mathbf{4 g}$ against A. gossypii and T. vaporariorum did not show comparable increases. However, the activity was also not increased against Frankliniella occidentalis.

1
compound

After finding the promising candidate, 5c, in the screening test, we conducted field trials against aphids to evaluate the effectiveness of this compound.

In the field trial against B. brassicae by a foliar application (Fig. 2), the wettable powder (WP) formulation of 5c
had an excellent efficacy similar to the market standard, pymetrozine, which is a controlling agent for sucking pests on vegetables and fruits [19]. In the field trial against A. gossypii on potato (Fig. 3), 5c WP showed a good efficacy even when there was a high infestation level at

Scheme 1 Synthesis of compound 4: (a) NaOMe, $50 \% \mathrm{MeOH}$ aq., 93% yield; (b) propionic anhydride, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DMF}, 89 \%$ yield; (c) DBU, $80 \% \mathrm{MeOH}$ aq., 56% yield; (d) $\mathrm{R}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, DMF; (e) ROH, EDCI, DMAP, DMF

Scheme 2 Synthesis of compound 5: (a) $\mathrm{R}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, DMF; (b) ROH, EDCI, DMAP, DMF
application time but it was slightly lower than that of pymetrozine.

In the preliminary field trial, $\mathbf{5 c}$ exhibited a good insecticidal activity against aphids, especially on developed leaves, but the efficacy was slightly less efficient on upper young leaves compared with the market standard. Under such conditions, with young leaves expanding, the efficacy was not improved, even at high dose of 75 g a.i./ha (data not shown). While the trial against Brevicoryne brassicae was conducted under low aphid infestation conditions and a low level of new entries from surrounding untreated plots, the trial against A. gossypii was conducted under higher infestation conditions and a lot of new entries were also observed.

To improve the insecticidal activity, we synthesized PP derivatives with chemical modifications at the $\mathrm{C}-1, \mathrm{C}-7$, or $\mathrm{C}-11$ positions and evaluated their insecticidal activities against M. persicae.

Among these PP derivatives, $\mathbf{1 f}, \mathbf{4 g}, \mathbf{5 c}$, and $\mathbf{5 d}$ showed higher insecticidal activities against the aphids than PP-A. Interestingly, the aphicidal activity of $\mathbf{1 f}$ is stronger than that of PP-A, while, as previously reported by the Kitasato

Institute, 1f showed a significant lower activity compared with PP-A with respect to ACAT-inhibiting activity (IC_{50} values of the ACAT-inhibiting activities of PP-A and $\mathbf{1 f}$, which were $0.058 \mu \mathrm{M}$ [1] and $2.45 \mu \mathrm{M}$ [4], respectively). Thus there may be no correlation between structure and insecticidal and ACAT-inhibiting activities.

Among these derivatives ($\mathbf{1 f}, \mathbf{4 g}, \mathbf{5 c}$, and 5d), 5c had the highest insecticidal activities against M. persicae. Based on the aphicidal spectrum, the derivatives that showed higher activities against M. persicae were active against A. gossypii, another important pest. Furthermore, the highly aphicidal compounds exhibited preferable activities against whiteflies, which are important target pests worldwide, especially on greenhouse crops. Unfortunately, another important pest on vegetables and fruits, thrips, were not target pests. However, the relationship between the insecticidal activities against M. persicae and A. gossypii were not in proportion. While PP-A showed equivalent activities against both aphids, derivatives, like $\mathbf{1 f}, \mathbf{4 g}$, and $\mathbf{5 c}$, that were highly active against M. persicae tended to be lower than expected against A. gossypii. This might result from the low systemicity into the leaves of these derivatives because the level is more important for a good activity in the assay against A. gossypii where the compounds were sprayed only the leaves. On the other hand, since the compounds were sprayed directly onto aphid bodies and the leaves in the assay against M. persicae, the compounds possibly exhibit high activities without good systemicity. Furthermore, 5c exhibited a good efficacy against aphids in field trials against B. brassicae. However, this compound was not superior to a market standard, pymetrozine, in the potato trial. Furthermore, the efficacy did not improve even at high dose,
(from compound \mathbf{c}

[^1]Table 3 Structure and insecticidal activity for Myzus percicae of 5

		 5	
compound	R	yield (from compound 2)	Insecticidal activity against Myzus persicae ($\mathrm{LC}_{90}, \mathrm{ppm}$)
$\underset{\text { (pyripyropene I) }}{\text { if }}$		-	0.043
2	H	-	>100
5a		15\% ${ }^{\text {c) }}$	0.66
$5 b^{\text {a }}$		60\%	1.3
$5 \mathrm{c}^{\text {b) }}$		78\%	0.026
$5 \mathrm{~d}^{\text {b) }}$		63\%	0.030
$5 \mathrm{e}^{\text {b) }}$		63\%	18
$5 f^{\text {b) }}$		75\%	88
$5 \mathrm{~g}^{\text {b }}$		68\%	16
$5 h^{\text {b) }}$		84\%	18
$5 \mathrm{i}^{\text {b) }}$		48\%	>100
$5 \mathrm{j}^{\text {b) }}$		56\%	>100

[^2]which indicated that systemicity was necessary for a good residual efficacy in potato in which young leaves develop rapidly after application. These improved compounds did not show high acute toxicities against mammalian animals,
rat, or mouse at $1000 \mathrm{mg} / \mathrm{kg}$ body weight using an oral application (data not shown). In summary, based on the strength of the insecticidal activity, the preferable insecticidal spectrum, the highly aphicidal compound $\mathbf{5 c}$ is very

Table 4 Insecticidal activities of PP-A, 1f, $\mathbf{4 g}$, and $5 \mathbf{c}$ against agricultural sucking pests
\(\left.$$
\begin{array}{lllll}\hline & \begin{array}{l}\text { Myzus } \\
\text { persicae }\end{array} & \begin{array}{l}\text { Aphis } \\
\text { gossypii } \\
\mathrm{LC}_{90} \\
\text { (ppm) }\end{array} & \begin{array}{l}\text { LC } 90 \\
\text { (ppm) }\end{array} & \begin{array}{l}\text { Trialeurodes } \\
\text { vaporariorum } \\
\text { \% mortality at } 5 \\
\text { ppm }\end{array}\end{array}
$$ \begin{array}{l}Frankliniella

occidentalis

\% mortality at

200 \mathrm{ppm}\end{array}\right]\)| PP-A | 0.56 | 0.30 | 80 |
| :--- | :--- | :---: | :---: |
| 1f | 0.043 | 0.14 | 18 |
| 4g | 0.038 | 0.28 | 89 |
| $\mathbf{5 c}$ | 0.026 | 0.078 | 100 |

promising, but suitable systemic properties such as those of PP-A could be important for a better field efficacy.

Experimental procedures

General methods

Reagents were obtained from commercial suppliers and were used without purification. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were measured on JEOL Lambda 400 MHz and BRUKER Ascend 400 MHz and 500 MHz spectrometers in CDCl_{3}. Mass spectra were obtained on JEOL JMS-FABmate spectrometer or JEOL JMS-700 mass spectrometer or Agilent Technologies 6530-Q-TOF LC/MS mass spectrometer. All infrared spectra were measured on a Horiba FT-210 spectrometer. Optical rotations were measured by using JASCO P-1010 polarimeter. Melting points were measured on OptiMelt (Stanford Research Systems) apparatus. Column chromatography was carried out on silica gel (Varian: Mega Bond Elut) and preparative thin-layer chromatography (PTLC) (Merck: Silica Gel $60 \mathrm{~F}_{254} 0.5 \mathrm{~mm}$).

1, 7, 11-Tri-deacetyl-1, 11-di-0propionylpyripyropene A (3)

To a solution of trideacetyl-1,7,11-tri- O-propionylpyripyropene A (1f, PP-I) ($890 \mathrm{mg}, 1.42 \mathrm{mmol}$), synthesized by the method previously reported [9], in an 80% aqueous MeOH solution (40 mL) was added 1,8-diazabicyclo[5.4.0]-undec7 -ene $(216 \mathrm{mg}, 1.42 \mathrm{mmol})$ and stirred at room temperature for 1.5 h . The reaction mixture was quenched with AcOH , and the mixture was concentrated under reduced pressure and diluted with CHCl_{3}. The organic layer was washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by chromatography on silica gel (acetone: hexane $=1: 1$) to afford $3(451 \mathrm{mg}, 0.793 \mathrm{mmol})$ as a solid in 56% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.14$ ($\mathrm{t}, J=5.1 \mathrm{~Hz}, 3 \mathrm{H}$), $1.26(\mathrm{~s}, 1 \mathrm{H}), 1.32-1.40(\mathrm{~m}, 1 \mathrm{H}), 1.42(\mathrm{~s}$,

Fig. 2 Efficacy of $\mathbf{5 c}$ wettable powder (WP) formulation against Brevicoryne brassicae on cotton using a foliar application
$3 \mathrm{H}), 1.45(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.66(\mathrm{~s}$, $3 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 2 \mathrm{H}), 2.13-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.37(\mathrm{~m}$, $4 \mathrm{H}), 2.90(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{~m}, 3 \mathrm{H}), 4.80(\mathrm{dd}, J=7.6,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.99-5.00(\mathrm{~m}, 1 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=5.4,3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.11(\mathrm{dt}, J=5.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H})$; mass spectrometry (MS) (fast atom bombardment (FAB)) m/z $570(\mathrm{M}+\mathrm{H})^{+}$; high-resolution mass spectrometry (HRMS) (electrospray ionization (ESI)) m / z calcd. for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NO}_{9} 570.2703$, found 570.2701 (M $+\mathrm{H})^{+}$.

1, 11-Di-deacetyl-1, 11-di-O-propionylpyripyropene A (4a)

To a solution of $\mathbf{3}(30 \mathrm{mg}, 0.0527 \mathrm{mmol})$ in anhydrous $N, N-$ dimethylformamide (DMF) (1 ml) were added triethylamine ($\mathrm{Et}_{3} \mathrm{~N}$) ($88 \mu \mathrm{l}, \quad 0.632 \mathrm{mmol}$), 4-(dimethylamino)pyridine (DMAP) ($13 \mathrm{mg}, 0.105 \mathrm{mmol}$) and acetic anhydride ($31 \mu \mathrm{l}$, $0.316 \mathrm{mmol})$ and stirred at room temperature for 30 min . The reaction mixture was poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by PTLC (acetone: hexane $=1: 1$) to afford $\mathbf{4 a}(14 \mathrm{mg}, 0.0222 \mathrm{mmol})$ as a solid in 42% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}$, $J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 1 \mathrm{H})$, $1.25-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}), 1.73-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.33$ (dq, $J=7.6,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.36(\mathrm{dq}, J=7.6,3.2 \mathrm{~Hz}, 2 \mathrm{H}$), $2.87(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~m}, 2 \mathrm{H}), 4.81(\mathrm{dd}, J=11.6,4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.97-5.00(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.1,4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.10(\mathrm{~m}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~s}, 1 \mathrm{H})$; MS (ESI) $m / z 612(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{NO}_{10} 612.2809$, found $612.2801(\mathrm{M}+\mathrm{H})^{+}$.

Fig. 3 Efficacy of $\mathbf{5 c}$ wettable powder (WP) formulation against Aphis gossypii on potato using a foliar application

1, 7, 11-Tri-deacetyl-7-O-isobutyryl-1, 11-di-Opropionylpyripyropene A (4b)

Reaction of $\mathbf{3}$ ($30 \mathrm{mg}, 0.0527 \mathrm{mmol}$) with isobutyric anhydride ($53 \mu \mathrm{l}, 0.316 \mathrm{mmol}$) gave $\mathbf{4 b}(11 \mathrm{mg}, 0.0172 \mathrm{mmol})$ as a solid in 33% yield by a similar procedure to $\mathbf{4 a}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 1.19(\mathrm{~s}$, $1 \mathrm{H}), 1.24(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33-1.38(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.60-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.90(\mathrm{~m}, 2 \mathrm{H})$, $2.15-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.65 (quint., $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, J=1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.80(\mathrm{dd}, J=11.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~m}, 2 \mathrm{H}), 6.38(\mathrm{~s}$, $1 \mathrm{H}), 7.40$ (dd, $J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ (dt, $J=8.1,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=4.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, 1 H); MS (ESI) $m / z 640(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{46} \mathrm{NO}_{10} 640.3122$, found $640.3130(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-7-O-pivaloyl-1, 11-di-0propionylpyripyropene A (4c)

Reaction of $\mathbf{3}$ ($30 \mathrm{mg}, 0.0527 \mathrm{mmol}$) with pivalic anhydride ($64 \mu \mathrm{l}, 0.316 \mathrm{mmol}$) gave $4 \mathrm{c}(23 \mathrm{mg}, 0.0358 \mathrm{mmol})$ as a solid in 68% yield by a similar procedure to $\mathbf{4 a} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J$ $=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.30-1.40(\mathrm{~m}$, $1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.66(\mathrm{~m}$, $2 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.19(\mathrm{~m}, 1 \mathrm{H})$, 2.32 (q, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.38(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.89(\mathrm{~s}$, $1 \mathrm{H}), 3.66(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.79 (dd, $J=11.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-5.00(\mathrm{~m}, 2 \mathrm{H}), 6.34(\mathrm{~s}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dt}, J=8.4,2.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.69(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}$, 1H); MS (ESI) m/z $654(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NO}_{10}$ 654.3278, found 654.3278 $(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 11-di-O-propionyl-7-0-(3pyridylcarbonyl)pyripyropene A (4g)

To a solution of $\mathbf{3}(30 \mathrm{mg}, 0.0527 \mathrm{mmol})$ and nicotinic acid $(13 \mathrm{mg}, 0.105 \mathrm{mmol})$ in anhydrous DMF (3 ml) were added 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride ($15 \mathrm{mg}, 0.0791 \mathrm{mmol}$) and DMAP ($6.4 \mathrm{mg}, 0.0527$ mmol) and stirred at room temperature for 4.5 h . The reaction mixture was poured into water and then extracted with EtOAc. The organic layer was washed with water and brine, dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The resulting residue was purified by PTLC (acetone: hexane $=1: 1)$ to give $\mathbf{4 g}(27 \mathrm{mg}, 0.0402$ mmol) as a solid in 76% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92$ (s , $3 \mathrm{H}), 1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26$ $(\mathrm{s}, 1 \mathrm{H}), 1.42-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.83(\mathrm{~m}, 3 \mathrm{H})$, $1.85(\mathrm{~s}, 3 \mathrm{H}), 1.83-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.33$ $(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.94(\mathrm{~m}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}$, $J=11.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.03-5.06(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=11.3$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.45$ (dd, $J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07$ (dt, $J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.36$ (dt, $J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.67$ (dd, $J=5.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.83$ (dd, $J=4.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.97$ (d, $J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{~d}, J$ $=1.9 \mathrm{~Hz}, 1 \mathrm{H})$; MS (FAB) m / z 675(M+H) ${ }^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{10} 675.2918$, found $675.2919(\mathrm{M}+\mathrm{H})^{+}$.

7-0-Cyclopropylcarbonyl-1, 7, 11-tri-deacetyl-1, 11-di-O-propionylpyripyropene A (4d)

Reaction of $\mathbf{3}$ ($30 \mathrm{mg}, 0.0527 \mathrm{mmol}$) with cyclopropanecarboxylic acid ($25 \mu \mathrm{l}, 0.310 \mathrm{mmol}$) gave $4 \mathrm{~d}(18 \mathrm{mg}$, 0.0286 mmol) as a solid in 54% yield by a similar procedure to $\mathbf{4 g}$. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $2 \mathrm{H}), 0.96(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.03-1.19(\mathrm{~m}, 6 \mathrm{H}), 1.26(\mathrm{~s}$, $1 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.52(\mathrm{~d}, J=3.8 \mathrm{~Hz}$, $1 \mathrm{H}), 1.61-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.71(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.94(\mathrm{~m}, 2 \mathrm{H})$, 2.14-2.19 (m, 1H), 2.24-2.40 (m, 4H), $2.95(\mathrm{~m}, 1 \mathrm{H}), 3.68$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (dd, J $=11.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.96-5.00(\mathrm{~m}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 7.40$ (dd, $J=8.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dt}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, $8.68(\mathrm{~m}, 1 \mathrm{H}), 9.01(\mathrm{~m}, 1 \mathrm{H})$; MS $(\mathrm{FAB}) \mathrm{m} / \mathrm{z} 638(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{35} \mathrm{H}_{44} \mathrm{NO}_{10} 638.2965$, found $638.2968(\mathrm{M}+\mathrm{H})^{+}$.

7-0-Cyclobutylcarbonyl-1, 7, 11-tri-deacetyl-1, 11-di-O-propionylpyripyropene A (4e)

Reaction of 3 ($30 \mathrm{mg}, 0.0527 \mathrm{mmol}$) with cyclobutanecarboxylic acid $(29 \mu \mathrm{l}, 0.310 \mathrm{mmol})$ gave $\mathbf{4 e}(15 \mathrm{mg}$, 0.0229 mmol) as a solid in 43% yield by a similar procedure to $\mathbf{4 g} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.17(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.34-1.40(\mathrm{~m}$,
$1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.54(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.67(\mathrm{~m}$, $2 \mathrm{H}), 1.69(\mathrm{~s}, 3 \mathrm{H}), 1.72-2.42(\mathrm{~m}, 12 \mathrm{H}), 2.91(\mathrm{~m}, 1 \mathrm{H}), 3.23$ (quint., $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 4.80 \quad(\mathrm{dd}, \quad J=11.3, \quad 4.9 \mathrm{~Hz}, \quad 1 \mathrm{H})$, 4.99-5.04 (m, 2H), $6.40(\mathrm{~s}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.1,4.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.09(\mathrm{dt}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=4.6,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H})$; MS (ESI) m/z $652(\mathrm{M}$ $+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{NO}_{10}$ 652.3077, found $652.3125(\mathrm{M}+\mathrm{H})^{+}$.

7-O-Benzoyl-1, 7, 11-tri-deacetyl-1, 11-di-0propionylpyripyropene A (4f)

Reaction of 3 ($30 \mathrm{mg}, 0.0527 \mathrm{mmol}$) with benzoic acid (85 $\mathrm{mg}, 0.696 \mathrm{mmol}$) gave $\mathbf{4 f}(34 \mathrm{mg}, 0.0505 \mathrm{mmol})$ as a solid in 95% yield by a similar procedure to $\mathbf{4 g}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.37-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.51(\mathrm{~s}$, $3 \mathrm{H}), 1.62(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.68-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~s}$, $3 \mathrm{H}), 1.91-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.33$ (q, $J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{dq}, J=7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.97(\mathrm{~s}, 1 \mathrm{H})$, $3.70(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83$ (dd, $J=11.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (dd, $J=11.1,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.66(\mathrm{~m}, 4 \mathrm{H})$, $8.05-8.13(\mathrm{~m}, \quad 3 \mathrm{H}), \quad 8.70(\mathrm{~d}, \quad J=4.6 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 9.00$ (s, 1H); MS (FAB) $m / z 674(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{NO}_{10} 674.2965$, found $674.2958(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 11-di-O-propionyl-7-O-(2pyridylcarbonyl)pyripyropene A (4h)

Reaction of $\mathbf{3}$ ($30 \mathrm{mg}, 0.0527 \mathrm{mmol}$) with picolinic acid (13 $\mathrm{mg}, 0.105 \mathrm{mmol}$) gave $\mathbf{4 h}(40 \mathrm{mg}, 0.0446 \mathrm{mmol})$ as a solid in 85% yield by a similar procedure to $\mathbf{4 g}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.37-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 1.63-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.96(\mathrm{~m}, 2 \mathrm{H})$, $2.13-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{dq}, J=$ $7.6,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.83 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=11.3,5.4 \mathrm{~Hz}, 1 \mathrm{H})$, 4.98-5.06 (m, 1H), 5.38 (dd, $J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{~s}$, $1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.89(\mathrm{dt}, J=$ $7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dt}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.67$ (dd, $J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.82-8.84(\mathrm{~m}$, $1 \mathrm{H}), 8.97(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$; MS (FAB) $m / z 675(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{~N}_{2} \mathrm{O}_{10} 675.2918$, found $675.2911(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 11-di-0-propionyl-7-0-(4pyridylcarbonyl)pyripyropene A (4i)

Reaction of 3 ($30 \mathrm{mg}, 0.0527 \mathrm{mmol}$) with isonicotinic acid $(13 \mathrm{mg}, 0.105 \mathrm{mmol})$ gave $4 \mathrm{i}(15 \mathrm{mg}, 0.0225 \mathrm{mmol})$ as a
solid in 43% yield by a similar procedure to $\mathbf{4 g} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.38-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 1.64-1.78(\mathrm{~m}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.88-2.05(\mathrm{~m}, 2 \mathrm{H})$, $2.17-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{dq}, J=$ $7.6,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.99(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.81(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=11.5,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $5.03-5.05(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=11.5,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}$, $1 \mathrm{H}), 7.37$ (dd, $J=8.1,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.91(\mathrm{dd}, J=4.6,1.6$ $\mathrm{Hz}, 2 \mathrm{H}), 8.07(\mathrm{dt}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=4.9$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.83(\mathrm{dd}, J=4.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.97(\mathrm{~d}$, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{FAB}) m / z 675(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{10} 674.2839$, found 674.2841 $(\mathrm{M})^{+}$.

7-0-(6-Chloro-3-pyridylcarbonyl)-1, 7, 11-tri-deacetyl-1,11-di-O-propionylpyripyropene A (4j)

Reaction of $\mathbf{3}$ ($30 \mathrm{mg}, 0.0527 \mathrm{mmol}$) with 6 -chloronicotinic acid ($16 \mathrm{mg}, 0.105 \mathrm{mmol}$) gave $\mathbf{4 j}(31 \mathrm{mg}, 0.0431 \mathrm{mmol})$ as a solid in 82% yield by a similar procedure to $\mathbf{4 g} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.38-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$, $1.87-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{q}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 2.41(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~d}, J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=11.3$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{dd}, J=11.3,4.9 \mathrm{~Hz}, 1 \mathrm{H})$, $6.40(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.8,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 1 \mathrm{H}), 8.06$ (dt, $J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{dd}, J=8.1$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=4.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}), 9.06(\mathrm{~d}, ~ J=2.7 \mathrm{~Hz}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $709(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m/z calcd. for $\mathrm{C}_{37} \mathrm{H}_{42} \mathrm{ClN}_{2} \mathrm{O}_{10}$ 709.2528 , found $709.2524(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 11-di-O-propionyl-7-0-(6-trifluoromethyl-3-pyridylcarbonyl)pyripyropene A (4k)

Reaction of $\mathbf{3}(30 \mathrm{mg}, \quad 0.0527 \mathrm{mmol})$ with 6 -(trifluoromethyl)nicotinic acid ($30 \mathrm{mg}, 0.158 \mathrm{mmol}$) gave $\mathbf{4 k}$ ($35 \mathrm{mg}, 0.0477 \mathrm{mmol}$) as a solid in 90% yield by a similar procedure to $\mathbf{4 g} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H})$, $1.44(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.80$ $(\mathrm{m}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.91-1.95(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.24(\mathrm{~m}$, $1 \mathrm{H}), 2.33(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{q}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $2.92(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=11.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.84(\mathrm{dd}, J=11.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H})$, 5.27 (dd, $J=11.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 7.38$ (dd, J $=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05-8.08$ $(\mathrm{m}, 1 \mathrm{H}), 8.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=4.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.96(\mathrm{~d}, \quad J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.38(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}$
(FAB) $\mathrm{m} / \mathrm{z} 743(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{10} \quad 743.2792$, found 743.2794 $(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 11-di-O-propionyl-7-0-(4-trifluoromethyl-3-pyridylcarbonyl)pyripyropene A

 (4I)Reaction of $\mathbf{3}(30 \mathrm{mg}, \quad 0.0527 \mathrm{mmol})$ with 4 -(trifluoromethyl)nicotinic acid ($30 \mathrm{mg}, 0.158 \mathrm{mmol}$) gave 41 $(19 \mathrm{mg}, 0.0257 \mathrm{mmol})$ as a solid in 49% yield by a similar procedure to $\mathbf{4 g} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.94(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H})$, $1.38-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}$, $3 \mathrm{H}), 1.83-1.97(\mathrm{~m}, 2 \mathrm{H}), 2.10-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{dq}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H})$, $3.74-3.80(\mathrm{~m}, 2 \mathrm{H}), 4.83(\mathrm{dd}, J=11.6,5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02-5.03(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{dd}, J=11.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}$, $1 \mathrm{H}), 7.40(\mathrm{dd}, J=7.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 8.08(\mathrm{dt}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=4.9,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$, $9.16(\mathrm{~s}, 1 \mathrm{H})$; MS (FAB) m/z $743(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) $\mathrm{m} /$ z calcd. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{10} 743.2792$, found 743.2789 (M $+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-7-0-(6-methyl-3-pyridylcarbonyl)-1, 11-di-O-propionylpyripyropene A (4m)

Reaction of $\mathbf{3}(20 \mathrm{mg}, 0.0351 \mathrm{mmol})$ with 6-methylnicotinic acid ($29 \mathrm{mg}, 0.210 \mathrm{mmol}$) gave $\mathbf{4 m}(15 \mathrm{mg}, 0.0219 \mathrm{mmol})$ as a solid in 63% yield by a similar procedure to $\mathbf{4 g} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.92(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{t}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.15$ $(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.39-1.47(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~s}$, $3 \mathrm{H}), 1.61(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.69-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.85(\mathrm{~s}$, $3 \mathrm{H}), 1.90-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{dq}, J=$ $7.7,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{dq}, J=7.6 \mathrm{~Hz}, 2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.66(\mathrm{~s}$, $3 \mathrm{H}), 2.96(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{~d}, J=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{dd}, J=11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~m}, 1 \mathrm{H})$, $5.25(\mathrm{dd}, J=11.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{dt}, J=$ $8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 8.24 (dd, $J=8.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.67$ (dd, J $=4.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.97(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.18(\mathrm{~d}, J=$ $2.2 \mathrm{~Hz}, 1 \mathrm{H})$; MS (FAB) $\mathrm{m} / \mathrm{z} 689(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{10}$ 688.2996, found $688.2994(\mathrm{M})^{+}$.

1, 7, 11-Tri-deacetyl-7-0-(4-methyl-3-pyridylcarbonyl)-1, 11-di-O-propionylpyripyropene A (4n)

Reaction of $\mathbf{3}$ ($20 \mathrm{mg}, 0.0351 \mathrm{mmol}$) with 4-methylnicotinic acid hydrochloride ($36 \mathrm{mg}, 0.210 \mathrm{mmol}$) gave $\mathbf{4 n}$ (16 mg , 0.0232 mmol) as a solid in 66% yield by a similar procedure
to $\mathbf{4 g} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $3 \mathrm{H}), 1.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.33-1.44(\mathrm{~m}$, $1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{~s}$, $3 \mathrm{H}), 1.91-1.99(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{q}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{dq}, J=7.6,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H})$, $2.96(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~d}, J=12.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.48$ (dd, $J=11.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=4.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.23(\mathrm{dd}, J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.24$ $(\mathrm{d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 8.98(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H})$; MS (FAB) m/z $689(\mathrm{M}$ $+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{10}$ 688.2996, found $688.2992(\mathrm{M})^{+}$.

1, 7, 11-Tri-O-cyclopropylcarbonyl-1, 7, 11-trideacetylpyripyropene A (5c)

To a solution of 2 ($30 \mathrm{mg}, 0.0656 \mathrm{mmol}$), which was synthesized by the method previously reported [9], and cyclopropanecarboxylic acid ($103 \mu \mathrm{l}, 1.31 \mathrm{mmol}$) in anhydrous DMF (2 mL) were added 1-ethyl-3-(3-dimethylfor-mamide)-carbodiimide hydrochloride ($76 \mathrm{mg}, 0.394 \mathrm{mmol}$) and DMAP ($32 \mathrm{mg}, 0.262 \mathrm{mmol}$) and stirred at room temperature for 68 h . The reaction mixture was then poured into water and extracted with EtOAc. The organic layer was washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by PTLC (acetone: hexane $=1: 1$) to afford $\mathbf{5 c}$ ($34 \mathrm{mg}, 0.0510 \mathrm{mmol}$) as a solid in 78% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.83-1.12(\mathrm{~m}, 12 \mathrm{H}), 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H})$, $1.33-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.69(\mathrm{~m}, 6 \mathrm{H}), 1.71(\mathrm{~s}$, $3 \mathrm{H}), 1.81-1.93(\mathrm{~m}, 2 \mathrm{H}), 2.14-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~m}, 1 \mathrm{H})$, $3.72(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.80$ (dd, $J=11.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-5.04(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H})$, $7.41(\mathrm{dd}, J=8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dt}, J=8.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.69$ (dd, $J=4.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~d}, J=1.4 \mathrm{~Hz}$, $1 \mathrm{H})$; MS (FAB) $m / z 662(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{NNaO}_{10} 684.2785$, found $684.2778(\mathrm{M}+\mathrm{Na})^{+}$.

1, 7, 11-Tri-deacetyl-1, 7, 11-tri-Opivaloylpyripyropene A (5b)

To a solution of $2(30 \mathrm{mg}, 0.0656 \mathrm{mmol})$ in anhydrous DMF (2 ml) were added $\mathrm{Et}_{3} \mathrm{~N}(60 \mathrm{mg}, 0.590 \mathrm{mmol})$, DMAP ($8 \mathrm{mg}, 0.00656 \mathrm{mmol}$), and pivalic anhydride ($239 \mu \mathrm{l}, 1.18$ mmol) and stirred at room temperature for 16 h . The reaction mixture was added to water and extracted with EtOAc. The organic layer was washed with water and brine, dried over anhydrous MgSO_{4}, filtered, and concentrated in vacuo. The resulting residue was purified by PTLC (acetone: hexane $=1: 1$) to give $\mathbf{5 b}(28 \mathrm{mg}, 0.0390 \mathrm{mmol})$ as a solid in 60% yield. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.93(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~s}, 9 \mathrm{H})$, $1.24(\mathrm{~s}, 9 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 9 \mathrm{H}), 1.37-1.40(\mathrm{~m}, 1 \mathrm{H})$,
$1.46(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.66(\mathrm{~m}, 3 \mathrm{H}), 1.72(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.89(\mathrm{~m}$, $2 \mathrm{H}), 2.16-2.21(\mathrm{~m}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 4.77 \quad(\mathrm{dd}, \quad J=11.2, \quad 5.2 \mathrm{~Hz}, \quad 1 \mathrm{H})$, $4.92-4.97(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H})$, $7.40(\mathrm{dd}, J=8.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.69(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H})$; MS (FAB) $\mathrm{m} / \mathrm{z} 710(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{40} \mathrm{H}_{56} \mathrm{NO}_{10} \quad 710.3904$, found 710.3906 $(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-O-cyclobutylcarbonyl-1, 7, 11-trideacetylpyripyropene A (5d)

Reaction of 2 ($30 \mathrm{mg}, 0.0656 \mathrm{mmol}$) with cyclobutanecarboxylic acid ($124 \mu \mathrm{l}, 1.31 \mathrm{mmol}$) gave $\mathbf{5 d}(29 \mathrm{mg}$, 0.0411 mmol) as a solid in 63% yield by a similar procedure to 5c. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 0.90(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H})$, $1.32-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.69(\mathrm{~s}$, $3 \mathrm{H}), 1.79-2.04(\mathrm{~m}, 8 \mathrm{H}), 2.17-2.40(\mathrm{~m}, 13 \mathrm{H}), 2.89(\mathrm{~m}, 1 \mathrm{H})$, $3.08-3.26$ (m, 3H), 3.67 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.78$ (d, $J=$ $11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, J=11.1,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-5.00$ $(\mathrm{m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 7.41(\mathrm{dd}, J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.09$ $(\mathrm{dt}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~m}, 1 \mathrm{H}), 9.00(\mathrm{~m}, 1 \mathrm{H})$; MS (FAB) m/z $704(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\quad \mathrm{C}_{40} \mathrm{H}_{50} \mathrm{NO}_{10} \quad 704.3435$, found 704.3429 $(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-O-cyclohexylcarbonyl-1, 7, 11-trideacetylpyripyropene A (5e)

Reaction of $2(20 \mathrm{mg}, 0.0436 \mathrm{mmol})$ with cyclohexanecarboxylic acid ($109 \mu \mathrm{l}, 0.871 \mathrm{mmol}$) gave 5e (22 mg , 0.0273 mmol) as a solid in 63% yield by a similar procedure to $5 \mathrm{c} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~s}$, $3 \mathrm{H}), 1.10-2.05(\mathrm{~m}, 37 \mathrm{H}), 2.14-2.49(\mathrm{~m}, 3 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H})$, 3.65 (d, $J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (dd, $J=10.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.97-5.01(\mathrm{~m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H})$, 7.42 (dd, $J=8.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.11(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.69(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 1 \mathrm{H}) ; \mathrm{MS}(\mathrm{FAB}) \mathrm{m} / \mathrm{z}$ $788(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{46} \mathrm{H}_{62} \mathrm{NO}_{10}$ 788.4374 , found $788.4362(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-O-benzoyl-1, 7, 11-trideacetylpyripyropene A (5f)

Reaction of 2 ($30 \mathrm{mg}, 0.0656 \mathrm{mmol}$) with benzoic acid (160 $\mathrm{mg}, 1.31 \mathrm{mmol})$ gave $\mathbf{5 f}(38 \mathrm{mg}, 0.0494 \mathrm{mmol})$ as a solid in 75% yield by a similar procedure to 5 c . ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $1.17(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~m}, 1 \mathrm{H})$, $1.77-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.94-2.05(\mathrm{~m}, 3 \mathrm{H})$, 2.13-2.31 (m, 1H), $2.95(\mathrm{~m}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 2 \mathrm{H}), 5.06(\mathrm{dd}, J$ $=6.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.32(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H})$, 7.34-7.64 (m, 10H), 8.01-8.12 (m, 7H), 8.66 (dd,
$J=5.1, \quad 1.6 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 8.97(\mathrm{~d}, \quad J=1.9 \mathrm{~Hz}, \quad 1 \mathrm{H}) ; \quad \mathrm{MS}$ (FAB) $\mathrm{m} / \mathrm{z} 770(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{46} \mathrm{H}_{44} \mathrm{NO}_{10} \quad 770.2965$, found 770.2952 $(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 7, 11-tri-O-(3pyridylcarbonyl)pyripyropene A (5g)

Reaction of 2 ($30 \mathrm{mg}, 0.0656 \mathrm{mmol}$) with nicotinic acid $(161 \mathrm{mg}, 1.31 \mathrm{mmol})$ gave $\mathbf{5 g}(34 \mathrm{mg}, 0.0443 \mathrm{mmol})$ as a solid in 68% yield by a similar procedure to $5 \mathrm{c} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.25(\mathrm{~s}, 1 \mathrm{H}), 1.47-1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.60(\mathrm{~s}, 3 \mathrm{H}), 1.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=11.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.02-2.15(\mathrm{~m}, 1 \mathrm{H})$, $2.20-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.32(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 1 \mathrm{H}), 4.12$ $(\mathrm{d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J$ $=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.18-5.29(\mathrm{~m}, 2 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.36-7.47$ $(\mathrm{m}, 4 \mathrm{H}), 8.07(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=8.0$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.32-8.36(\mathrm{~m}, 2 \mathrm{H}), 8.67(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.79(\mathrm{dt}, J=4.8,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 8.83(\mathrm{dd}, J=4.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 8.98(\mathrm{dd}, J=2.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.22(\mathrm{dd}, J=2.0$, $0.8 \mathrm{~Hz}, 1 \mathrm{H}), 9.30(\mathrm{ddd}, J=5.2,2.0,0.8 \mathrm{~Hz}, 2 \mathrm{H})$; MS (ESI) $m / z 773(\mathrm{M}+\mathrm{H})^{+} ;$HRMS(ESI) m / z calcd. for $\mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{10}$ 773.2823 , found $773.2825(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 7, 11-tri-0-(2pyridylcarbonyl)pyripyropene A (5h)

Reaction of $2(20 \mathrm{mg}, 0.0437 \mathrm{mmol})$ with picolinic acid (32 $\mathrm{mg}, 0.262 \mathrm{mmol}$) gave $\mathbf{5 h}(28 \mathrm{mg}, 0.0366 \mathrm{mmol})$ as a solid in 84% yield by a similar procedure to 5 c. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 1 \mathrm{H}), 1.54-1.55(\mathrm{~m}, 1 \mathrm{H})$, $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.70(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H})$, 1.92-1.94 (m, 2H), 1.98-2.13 (m, 1H), 2.16-2.20 (m, 1H), 2.29-2.33 (m, 1H), $2.93(\mathrm{~s}, 1 \mathrm{H}), 4.14(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.26(\mathrm{~d}, ~ J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.33$ (dd, $J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.45$ (dd, $J=7.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $6.42(\mathrm{~s}, 1 \mathrm{H}), 7.38$ (ddd, $J=8.0,4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-7.46$ $(\mathrm{m}, 2 \mathrm{H}), 7.51$ (ddd, $J=8.0,4.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.85(\mathrm{~m}$, $2 \mathrm{H}), 7.88(\mathrm{dt}, J=8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04-8.08(\mathrm{~m}, 2 \mathrm{H})$, $8.09-8.11(\mathrm{~m}, 1 \mathrm{H}), 8.15-8.18(\mathrm{~m}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=4.8$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.73-8.77(\mathrm{~m}, 2 \mathrm{H}), 8.80-8.82(\mathrm{~m}, 1 \mathrm{H}), 8.97(\mathrm{~d}$, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$; MS (ESI) $m / z 773(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{43} \mathrm{H}_{41} \mathrm{~N}_{4} \mathrm{O}_{10} 773.2823$, found 773.2823 (M $+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 7, 11-tri-0-(6-trifluoromethyl-3-pyridylcarbonyl)pyripyropene A (5i)

Reaction of $\mathbf{2}$ ($30 \mathrm{mg}, \quad 0.0656 \mathrm{mmol}$) with 6-(trifluoromethyl)nicotinic acid ($250 \mathrm{mg}, 1.31 \mathrm{mmol}$) gave $\mathbf{5 i}$ ($31 \mathrm{mg}, 0.0318 \mathrm{mmol}$) as a solid in 48% yield by a similar procedure to $5 \mathrm{c} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 1.18(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$,
$1 \mathrm{H}), 1.51-1.54(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.64(\mathrm{~d}, J=4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.76-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.90-2.00(\mathrm{~m}, 1 \mathrm{H})$, $2.10-2.12(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.35(\mathrm{~m}, 1 \mathrm{H})$, $2.96(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}$, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$), 5.06 (dd, $J=3.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17-5.26$ $(\mathrm{m}, 2 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 7.38$ (ddd, $J=8.1,4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 8.07$ (dt, $J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.47$ (dd, $J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.54$ (dd, $J=8.2,1.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.68$ (dd, $J=4.9,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $8.97(\mathrm{~d}, \quad J=1.6 \mathrm{~Hz}, \quad 1 \mathrm{H}), \quad 9.30(\mathrm{~d}, \quad J=1.8 \mathrm{~Hz}, \quad 1 \mathrm{H})$, 9.37-9.39 (m, 2H); MS (ESI) m/z $977(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{46} \mathrm{H}_{38} \mathrm{~F}_{9} \mathrm{~N}_{4} \mathrm{O}_{10}$ 977.2444, found $977.2443(\mathrm{M}+\mathrm{H})^{+}$.

1, 7, 11-Tri-deacetyl-1, 7, 11-tri-0-(4-trifluoromethyl-3-pyridylcarbonyl)pyripyropene A (5j)

Reaction of $\mathbf{2} \quad(30 \mathrm{mg}, \quad 0.0656 \mathrm{mmol})$ with 4 -(trifluoromethyl)nicotinic acid ($250 \mathrm{mg}, 1.31 \mathrm{mmol}$) gave $\mathbf{5 j}$ ($36 \mathrm{mg}, 0.0370 \mathrm{mmol}$) as a solid in 56% yield by a similar procedure to $5 \mathrm{c} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 1.06(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}$, $1 \mathrm{H}), 1.45(\mathrm{dt}, J=13.0,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J$ $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{~s}, 3 \mathrm{H}), 1.77-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.97$ (m, 1H), 2.04-2.09 (m, 2H), 2.26-2.29 (m, 1H), 2.98 (brs, $1 \mathrm{H}), 4.10(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.02(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{dd}, J=11.7,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 5.29 (dd, $J=11.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.42(\mathrm{~s}, 1 \mathrm{H}), 7.40(\mathrm{ddd}, J=$ $8.1,4.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $5.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07-8.10(\mathrm{~m}, 1 \mathrm{H}), 8.69(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.95$ (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.97$ (d, $J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.00$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.11(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~s}$, 1H); MS (ESI) m/z $977(\mathrm{M}+\mathrm{H})^{+}$; HRMS (ESI) m / z calcd. for $\mathrm{C}_{46} \mathrm{H}_{38} \mathrm{~F}_{9} \mathrm{~N}_{4} \mathrm{O}_{10}$ 977.2444, found 977.2433 $(\mathrm{M}+\mathrm{H})^{+}$.

Insecticidal screening against agricultural pests

Pyripyropene derivatives were evaluated by an insecticidal screening against green peach aphid (M. persicae) following the method described in our former report [15]. The screening against cotton aphid (A. gossypii), greenhouse whitefly (T. vaporariorum), and western flower thrips (F. occidentalis) were conducted by the method previously reported [20].

Field efficacy of compound 5 c in a foliar application against cabbage aphid (B. brassicae) on cabbage

The field trial was conducted in a cabbage field of Odawara City, Kanagawa Prefecture in Japan using one of general formulation types, WP. This formulation, including 5\% (w/ w) active ingredient, was prepared following a preparation
method reported previously [20]. The determined amount of diluted solution of $\mathbf{5 c}$ WP in water was applied to cabbage infested with cabbage aphids. Before application and at 1,5 , 7,13 and 20 days after application, the numbers of aphids were counted in each plot. The corrected density index was calculated as follows:

$$
\begin{align*}
& \text { Corrected density index } \\
& =\left[\frac{(\text { the number of aphids in treated plot at } X \text { days after application) }}{\text { (the number of aphids in treated plot before application) }}\right] \\
& \\
& \quad \times\left[\frac{\text { (the number of aphids in untreated plot before application) }}{\text { (the number of aphids in untreated plot at } X \text { days after application) }]}\right] \tag{1}\\
& \\
&
\end{align*}
$$

Then, compared with untreated plot, the control percentage was calculated as follows:
$\%$ control $=100-($ the corrected density index $)$.

Field efficacy of 5 c in a foliar application against cotton aphid (A. gossypii) on potato

The field trial was conducted in a potato field of Misawa City, Aomori Prefecture in Japan as a non-disclosed trial conducted by the Institute of Japan Plant Protection Association. The WP formulation, including 5\% (w/w) active ingredient, was prepared and used in the same way as the field trial against B. brassicae. The determined amount of diluted solution of $\mathbf{5 c}$ WP in water was applied to potatoes infested with cotton aphids. Before application and at 2, 7 and 14 days after application, the numbers of aphids were counted in each plot. The corrected density index and percentage of control were calculated by the same formulae as the field trial against cabbage aphid.

Acknowledgements We thank Dr. N Minowa, Ms. K Yamamoto, and Ms. Y Mitani for valuable scientific discussion. We are also grateful to Ms. T Miyara, Ms. S Miki, Ms. F Nango, and Dr. T Murata for their contributions to the analytical chemistry. We thank Lesley Benyon, PhD from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

References

1. Ōmura S, Tomoda H, Kim YK, Nishida H. Pyripyropenes, highly potent inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. J Antibiot. 1993;46:1168-9.
2. Tomoda H, Kim YK, Nishida H, Masuma R, Ōmura S. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. I. Production, isolation, and biological properties. J Antibiot. 1994;47:148-53.
3. Kim YK, Tomoda H, Nishida H, Sunazuka T, Obata R, Ōmura S. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. II. Structure elucidation of pyripyropenes A, B, C and D. J Antibiot. 1994;47:154-62.
4. Tomoda H, Tabata N, Yang DJ, Takayanagi H, Nishida H, Ōmura S, Kaneko T. Pyripyropenes, novel inhibitors of acyl-CoA:cholesterol acyltransferase produced by Aspergillus fumigatus. III. Structure elucidation of pyripyropene E to L. J Antibiot. 1995;48:495-503.
5. Tomoda H, Tabata N, Yang DJ, Namatame I, Tanaka H, Ōmura S. Pyripyropenes, novel ACAT inhibitors produced by Aspergillus fumigatus. IV. Structure elucidation of pyripyropene M to R. J Antibiot. 1996;49:292-8.
6. Tsujiuchi G, Nakahashi M, Yamamoto D, Tani M, Takagi M. Novel microorganism having ability to produce pyripyropenes. J Tech Disclosure Patent No.: WO 2008-500997, February 13, 2008.
7. Tomoda H, Nishida H, Kim YK, Obata R, Sunazuka T, Ōmura S, Bordner J, Guadliana M, Dormer PG, Smith AB III. Relative and absolute stereochemistry of pyripyropene A, a potent, bioavailable inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). J Am Chem Soc. 1994;116:12097-8.
8. Obata R, Sunazuka T, Li Z, Tomoda H, Ōmura S. Structureactivity relationships of pyripyropenes fungal Acyl-CoA: cholesterol acyltransferase inhibitors. J Antibiot. 1995;48:749-50.
9. Obata R, Sunazuka T, Tomoda H, Harigaya Y, Ōmura S. Chemical modification and structure-activity relationships of pyripyropenes; potent bioavailable inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). Bioorg Med Chem Lett. 1995;5:2683-8.
10. Obata R, Sunazuka T, Li Z, Tian Z, Harigaya Y, Tabata N, Tomoda H, Ōmura S. Chemical modification and structure-
activity relationships of pyripyropenes. 1. Modification at the four hydroxyl groups. J Antibiot. 1996;49:1133-48.
11. Obata R, Sunazuka T, Kato Y, Tomoda H, Harigaya Y, Ōmura S. Chemical modification and structure-activity relationships of pyripyropenes. 2. 1, 11-Cyclic analogs. J Antibiot. 1996;49:1149-56.
12. Obata R, Sunazuka T, Tian Z, Tomoda H, Harigaya Y, Ōmura S. Chemical modification and structure-activity relationships of pyripyropenes. 3. Synthetic conversion of pyridine-pyrone moiety. J Antibiot. 1997;50:229-36.
13. Obata R, Sunazuka T, Tian Z, Tomoda H, Harigaya Y, Omura S, Smith AB. New analogs of the pyripyropene family of ACAT inhibitors via à-pyrone fragmentation and ?-acylation/cyclization. Chem Lett.1997;26:935-6.
14. Obata R, Sunazuka T, Harigaya Y, Hayashi M, Rho MC, Tomoda H, Ōmura S. Structure-activity relationships study of pyripyropenes: reversal of cancer cell multidrug resistance. J Antibiot. 2000;53:422-5.
15. Horikoshi R, Goto K, Mitomi M, Oyama K, Sunazuka T, Ōmura S. Identification of pyripyropene A as a promising insecticidal compound in a microbial metabolite screening. J Antibiot. 2017;70:272-6.
16. Nanasaheb PC, Bryony CB. Toxins for transgenic resistance to hemipteran pests. Toxins. 2012;4:405-29.
17. Bass C et al. The evolution of insecticide resistance in the peach potato aphid Myzus persicae. Insect Biochem Mol Biol. 2014;51:41-51.
18. Fernández E et al. Insecticide resistance status of Bemisia tabaci Q-biotype in south-eastern Spain. Pest Manag Sci. 2009;65:885-91.
19. Fuog D, Fergusson SJ, Flückig C. Insecticides with novel modes of action mechanisms and application. In: Ishaaya I, Degheele D, editors. Pymetrozine: a novel insecticide affecting aphids and whiteflies. Germany: Springer; 1998. p. 40-9.
20. Goto K et al. (Meiji Seika Kaisha Co., Ltd. and the Kitasato Institute) Pest control agent WO 2008/066153 A1 (2008).

[^0]: Kimihiko Goto
 kimihiko.gotou@meiji.com
 1 Agricultural \& Veterinary Research Labs, Agricultural \& Veterinary Division, Meiji Seika Pharma Co., Ltd., Yokohama, Japan
 2 Graduate School of Infection Control Sciences, Kitasato Institute for Life Sciences, Kitasato University, Tokyo, Japan

[^1]: ${ }^{\text {a }}$ Reaction condition; $\mathrm{R}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, DMF
 ${ }^{\mathrm{b}}$ Reaction condition; ROH, EDCI, DMAP, DMF

[^2]: ${ }^{\text {a }}$ Reaction condition; $\mathrm{R}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMAP}, \mathrm{DMF}$
 ${ }^{\mathrm{b}}$ Reaction condition; ROH, EDCI, DMAP, DMF
 ${ }^{c}$ Refer to ref. [9]

