BRIEF COMMUNICATION

Structure and biosynthesis of mayamycin B, a new polyketide with antibacterial activity from *Streptomyces* sp. 120454

Sheng Tao Bo¹ · Zi Fei Xu¹ · Li Yang¹ · Ping Cheng¹ · Ren Xiang Tan¹ · Rui Hua Jiao¹ · Hui Ming Ge¹

Received: 7 December 2017 / Revised: 6 February 2018 / Accepted: 13 February 2018 / Published online: 7 March 2018 © The Author(s) under exclusive licence to the Japan Antibiotics Research Association 2018

Abstract

Mayamycin B, a new antibacterial type II polyketide, together with its known congener mayamycin A, were isolated from *Streptomyces* sp. 120454. The structure of new compound was elucidated by extensive spectroscopic analysis and comparison with literature data. Sequencing and bioinformatics analysis revealed the biosynthetic gene cluster for mayamycins A and B.

Natural products biosynthesized by type II polyketide synthases (PKSs) comprise many important clinical drugs or drug candidates [1]. The angucycline-type polycyclic compounds, representing one of the largest family of type II polyketides, features a characteristic tetracyclic benz[a] anthracene scaffold, which are derived via successive decarboxylative Claisen condensations of an acetyl-CoA starter unit and nine methylmalonyl-CoA extender units [2–4]. The glycosylation using a combination of diverse sugar units at different angucyline aglycone position creates a great structural diversity for angucycline-type compounds [2, 5, 6]. These include landomycins, urdamycins, and saquayamycin, which are well known for their unusual structural features and potent antibacterial or antitumor bioactivities [7–9].

During our effort to discover new/bioactive natural products from microbes, we found that *S*. sp. 120454 strain mainly produce two major peaks based on chemical profiling when using B medium (dextrin 40 g, tomato paste

Electronic supplementary material The online version of this article (https://doi.org/10.1038/s41429-018-0039-x) contains supplementary material, which is available to authorized users.

Rui Hua Jiao rhjiao@nju.edu.cn

Hui Ming Ge hmge@nju.edu.cn

¹ State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China 7.5 g, NZ Amine 2.5 g, primary yeast 5 g in 1 L distilled water) as fermentation medium. The large-scale fermentation was carried out at 30 °C for 7 days. The broth was harvested, and extracted by ethyl acetate, yielding 3.62 g brown crude extract, which was then fractionated and purified to afford compounds **1** and **2** (Fig. 1).

Compound 1 was isolated as a brown amorphous solid with the molecular formula of $C_{25}H_{23}NO_7$, as determined by high-resolution ESIMS ($[M+H]^+$ m/z = 450.1497), indicating 15° of unsaturation. Initial interpretation of its MS, ¹H, ¹³C NMR spectra (Table 1) indicated the structure of 1 was highly similar to mayamycin (2), an aguacycline-type compound firstly isolated from a marine *Streptomyces* strain [10], with the exception of lacking an *N*-methyl group on its aminosugar moiety. Further elucidation of the 1D and 2D NMR spectra confirmed the presence of an identical anguacycline aglycone to that in mayamycin (2). An aminosugar moiety was evident by ¹H-¹H COSY correlations of H-1'/H-2'/H-3'/H-4'/H-5'/H-6' from its ¹H-¹H COSY spectrum, and HMBC correlation of H-5' (δ_H 3.56) with C-1' (δ_C 72.5); as well as the NMR data comparison with those in 2.

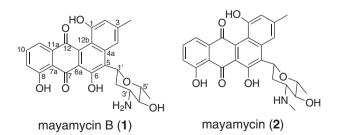


Fig. 1 Structures of compounds 1 and 2

SPRINGER NATURE

	1		2		
Position	$\delta_{\rm C}$, mult.	$\delta_{\rm H} (J \text{ in Hz})$	$\delta_{\rm C}$, mult.	$\delta_{\rm H} \left(J \text{ in Hz} \right)$	
1	156.5,C		156.5,C		
2	114.3,CH	6.71,s	114.4,CH	6.74,s	
3	143.5,C		143.4,C		
3-CH ₃	22.5,CH ₃	2.43,s	22.6,CH ₃	2.45,s	
4	117.2,CH	7.97,s	117.6,CH	8.00,s	
4a	139.7,C		139.9,C		
5	126.2,C		126.5,C		
6	156.4,C		154.4,C		
6a	138.7,C		138.4,C		
7	194.2,C		194.2,C		
7a	116.3,C		116.3,C		
8	162.7,C		162.9,C		
9	124.6,CH	7.25,d (8.3)	124.9,CH	7.29,dd (1.2,8.5)	
10	138.5,CH	7.71,t (7.7)	138.8,CH	7.75,dd (7.5,8.5)	
11	120.1,CH	7.55,d (7.3)	120.4,CH	7.58,dd (1.2,7.5)	
11a	137.7,C		137.9,C		
12	187.7,C		188.0,C		
12a	119.2,C		119.4,C		
12b	117.6,C		117.8,C		
1′	72.5,CH	5.69,dd (10.4,1.8)	72.8,CH	5.70,dd (11.7,2.0)	
2'a	34.7,CH ₂	2.49,m	32.9,CH ₂	2.35,ddd (13.0,11.7)	
2′b	34.7,CH ₂	2.19,m	32.9,CH ₂	2.27,ddd (13.0,2.0,4.8)	
3'	55.3,CH	3.41,m	63.0,CH	3.23,br ddd (4.8,11.7,9.0)	
3'-N-CH3			31.4,CH ₃	2.63,s	
4'	74.5,CH	3.42,m	74.5,CH	3.41,t (9.0)	
5'	79.1,CH	3.56,m	79.2,CH	3.56,dq (9.0,6.1)	
5'-CH ₃	18.4,CH ₃	1.42,d (6.1)	18.7,CH ₃	1.42,d (6.1)	

Table 1 1 H (600 MHz) and 13 C (125 MHz) NMR data of **1** and **2** [10] in methanol- d_4

The linkage of this aminosugar moiety to angucycline was through a rare C–C bond according to the HMBC correlations of H-1' with C-4a and C-6.

The stereochemistry of the sugar moiety was determined by interpretation of its NOESY spectrum and *J*-coupling constant. A large coupling constant (10.2 Hz) between H-1' and H-2'a indicated an axial configuration of H-1'. The strong NOE correlations of H-1' with H-3' and H-5' revealed that all of these three protons are in axial positions. Furthermore, H-4' showed NOE correlations to H-2'a suggested that H-4' and H-2'a are also in axial position. Thus, the relative configuration of the deduced aminosugar is 1' R^* , 3' R^* , 4'S, and 5'R. The result indicates that compound **1**

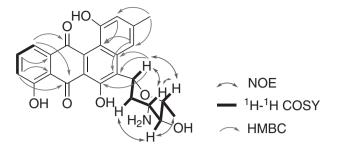


Fig. 2 Key 2D NMR correlations of 1

Table 2 Antibacterial activities of 1-2 (MIC, µM)

Pathogens ^a	1	2	Rifampicin
S. aureus	64.0	64.0	1.0
MRSA	>128.0	>128.0	4.0
S. pyogenes	64.0	64.0	0.5
B. subtilis	64.0	64.0	1.0
P. aeruginosa	64.0	64.0	0.5
M. luteus	2.0	8.0	0.5

^aS. aureus, MRSA, B. subtilis, S. pyogenes, P. aeruginosa, and M. luteus represent Staphylococcus aureus CMCC(B)26003, Methicillinresistant Staphylococcus aureus (MRSA) ATCC43300, Bacillus subtilis CICC10283, Streptococcus pyogenes ATCC19615, Pseudomonas aeruginosa CICC10351, and Micrococcus luteus CMCC(B) 28001, respectively

is an *N*-desmethyl derivative of mayamycin (2), accordingly, compound 1 is designated as mayamycin B (Fig. 2).

Compound 2 was also isolated as a brown amorphous solid, its structure is identified as mayamycin based on the comparison of its NMR and HRESIMS data with the published data [10, 11].

Mayamycin has been reported to show antibacterial activities against a panel of pathogenic bacteria [10, 11]. Therefore, the antimicrobial activities of compounds 1 and 2 were tested against six pathogenic bacteria as shown in Table 2. The result showed mayamycin B (1) showed potent bioactivity against *Micrococcus luteus* with MIC value of 2.0 μ M, whereas, its congener mayamycin A (2) only has MIC value of 8.0 μ M, suggesting the *N*-methyl group is important to its activity.

We next aimed to identify mayamycin biosynthetic gene cluster. To facilitate the process, the strain of *Streptomyces* sp. 120454 was subjected to whole-genome sequencing by Pacbio, yielding a 7.8 Mb linear chromosome with 71.5% GC content. AntiSMASH analysis indicated at least thirty one distinct secondary metabolite gene clusters were encoded in its genome with only one type II polyketide synthetic gene cluster, whose gene products show high similarity to proteins involved in other angucycline biosynthesis [2]. The putative *may* gene cluster spans a

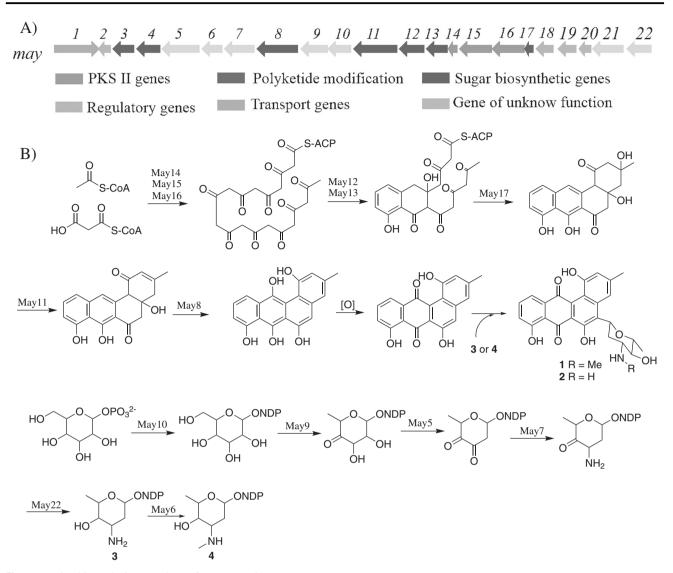


Fig. 3 Putative biosynthetic gene cluster for mayamycins

23.2 kb contiguous DNA region consisting of 20 genes responsible for biosynthesis, regulation, and transporter. The nucleotide sequence have been deposited in the Genbank under accession number MG601230.

Functional assignments for the gene products within may gene cluster were made by sequence analysis through BLAST comparison. Biosynthesis of angucycline aglycone was initiated by the minimal type II PKS cassette, May16 (KS_{α}) , May15 (KS_{β}) , and May14 (ACP) which utilize one acetyl CoA and nine malonyl-CoA to form a linear polyketide backbone. May12, May13, and May17 are homologues to bifunctional cyclase/dehydrase JadD, ketoreductase JadE, and polyketide cyclase JadI, respectively, in jadomycin biosynthesis. It is thus anticipated that the products of may12, may13, and may17 are sufficient for the formation of tetracyclic ring [12-15]. The subsequent two steps of dehydration followed by oxidation led to the formation of desired aglycone (Fig. 3).

Six genes including may5, may6, may7, may9, may10, and may22 encode proteins similar to Med-ORF16, Med-ORF15, Med-ORF20, Med-ORF17, Med-ORF18, Med-ORF14, which are essential for the biosynthesis of aminosugar moiety of medemycin (Table 3) [16], suggesting these proteins were responsible for synthesizing aminosugar moiety in compounds 1 and 2. A *C*-glycosyltransferase, May21, catalyzes the final *C*-glycosylation step using either 3 or 4 as aminosugar donors to finally form 1 and 2 [16–19].

In summary, a new type II polyketide, mayamycin B (1), together with its known congener mayamycin (2) were isolated and characterized from *Streptomyces* sp. 120454. Compound 1 showed potent antibacterial bioactivity against *Micrococcus luteus*. Sequencing and bioinformatics

Gene	Size (aa)	Protein homolog	Accession number	Similarity/identity (%)
may1	550	Transporter	OKI73663	92/99
may2	158	JadX: unknown	AAK01935	94/54
may3	266	JadM: phosphopantetheinyl transferase-like protein	AAO65355	80/46
may4	295	Thioesterase	KIA66745	93/60
may5	470	Med-ORF16: NDP-deoxyglucose-2,3- dehydratase	BAC79031	96/66
тауб	253	Med-ORF15: N-Methyl transferase	BAC79032	98/48
may7	373	Med-ORF20: NDP-deoxyhexose 3- aminotransferase	BAC79028	98/77
may8	504	JadH: bifunctional monooxygenase- dehydratase	AAV52248	95/68
may9	331	Med-ORF17: NDP-hexose 4,6-dehydratase	BAC79030	96/77
may10	288	Med-ORF18: NDP-glucose phosphate nucleotidyltransferase	BAC79029	62/36
may11	536	JadF: bifunctional monooxygenase- dehydratase	AAV52246	91/64
may12	313	JadD: bifunctional cyclase/dehydrase	AAB36566	99/78
may13	262	JadE: ketoreductase	ACP19356	96/74
may14	117	JadC: acyl carrier protein	ACP19355	68/63
may15	404	JadB: chain length factor	ACP19354	99/70
may16	423	JadA: ketosynthase alpha	ACP19353	98/80
nay17	109	JadI: polyketide synthase cyclase	AF126429_2	100/83
may18	224	JadR1: DNA-binding response regulator	AJE85517	100/67
nay19	235	Monooxygenase	AF425988_1	78/33
nay20	159	Hypothetical protein	SFL52321	91/32
may21	379	Med-ORF8: C-glycosyltransferase	BAC79040	100/52
may22	308	Med-ORF18: NDP-4-keto-6-deoxyhexose reductase	BAC79033	94/56

Table 3 Biosynthetic gene clusters of aminosugar moiety in mayamycins

analysis of *S*. sp. 120454 allow us to propose the biosynthetic pathway of mayamycin for the first time.

Mayamycin B (1): dark brown amorphous solid; UV (MeOH) λ_{max} (lg ϵ) 440 (2.83), 328 (3.02), 298 (2.98), 236 (3.26); IR (KBr) ν_{max} cm⁻¹: 3250, 2922, 2857, 2360, 1608, 1420; ¹H (600 MHz) and ¹³C (150 MHz) NMR data see Table 1; HRESIMS *m/z*: 450.1497 [M+H]⁺ (calcd. for C₂₅H₂₄NO₇, 450.1508).

Acknowledgements We thank Dr. Ben Shen (The Scripps Research Institute) for his generous gift of *S.* sp. 120454. This work was financially supported by Natural Science Foundation of China (81522042, 21572100, 81421091, 81500059, 81673333, and 21672101), and Jiangsu Provincial Key Medical Discipline (laboratory) (no. ZDXKA2016020).

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interests.

References

- Minotti G, et al. Anthracyclines: molecular advances and pharmacologic developments in antitumor activity and cardiotoxicity. Pharmacol Rev. 2004;56:185–229.
- Kharel MK, et al. Angucyclines: biosynthesis, mode-of-action, new natural products and synthesis. Nat Prod Rep. 2012;29:264–325.
- Das A, Khosla C. Biosynthesis of aromatic polyketides in bacteria. Acc Chem Res. 2009;42:631–639.
- Moore BS, Hertweck C. Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat Prod Rep. 2002;19:70–99.
- 5. Omura S, et al. New antitumor antibiotics, OS-4742A1, A2, B1 and B2 produced by a strain of *Streptomyces*. J Antibiot. 1997;30:908–16.
- Martin GDA, et al. Marmycins A and B, cytotoxic pentacyclic Cglycosides from a marine sediment-derived actinomycete related to the genus Streptomyces. J Nat Prod. 2007;70:1406–9.
- Shaaban KA, et al. 11-Deoxylandomycinone and landomycins X-Z, new cytotoxic angucyclin(on)es from a *Streptomyces cyanogenus* K62 mutant strain. J Antibiot. 2011;64:141–50.

- Patrikainen P, et al. Structure-based engineering of angucyclinone 6-ketoreductases. Chem Biol. 2014;21:1381–1391.
- Zhu XC, et al. Cytotoxic rearranged angucycline glycosides from deep sea-derived *Streptomyces lusitanus* SCSIO LR32. J Antibiot. 2017;70:819–22.
- Imke S, et al. Mayamycin, a cytotoxic polyketide from a *Streptomyces* strain isolated from the marine sponge *Halichondria* panacea. J Nat Prod. 2010;73:1309–12.
- Liang. Y, et al. Bioactive polycyclic quinones from marine Streptomyces sp. 182SMLY. Mar Drugs. 2016;14:10.
- Han L, et al. Cloning and characterization of polyketide synthase genes for jadomycin B biosynthesis in *Streptomyces venezuelae* ISP5230. Microbiology. 1994;140:3379–89.
- Rix U, et al. The oxidative ring cleavage in jadomycin biosynthesis: a multistep oxygenation cascade in a biosynthetic black box. ChemBioChem. 2005;6:838–45.
- Chen YH, et al. Functional analyses of oxygenases in jadomycin biosynthesis and identification of JadH as a bifunctional oxygenase/dehydrase. J Biol Chem. 2005;280:22508–14.

- Kulowski K, et al. Functional characterization of the jadI gene as a cyclase forming angucyclinones. J Am Chem Soc. 1999;121:1786–94.
- Ichinose K, et al. Cloning, sequencing and heterologous expression of the medermycin biosynthetic gene cluster of *Streptomyces* sp. AM-7161: towards comparative analysis of the benzoiso-chromanequinone gene clusters. Microbiology. 2003;149:1633–45.
- Ichinose K, et al. The granaticin biosynthetic gene cluster of Streptomyces violaceoruber Tü22: sequence analysis and expression in a heterologous host. Chem Biol. 1998;5:647–59.
- Faust B, et al. Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in *Streptomyces fradiae* Tü2717. Microbiology. 2000;146:147–54.
- Trefzer A, et al. Biosynthetic gene cluster of simocyclinone, a natural multihybrid antibiotic. Antimicrob Agents Chemother. 2002;46:1174–82.