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Abstract
Mayamycin B, a new antibacterial type II polyketide, together with its known congener mayamycin A, were isolated from
Streptomyces sp. 120454. The structure of new compound was elucidated by extensive spectroscopic analysis and
comparison with literature data. Sequencing and bioinformatics analysis revealed the biosynthetic gene cluster for
mayamycins A and B.

Natural products biosynthesized by type II polyketide syn-
thases (PKSs) comprise many important clinical drugs or
drug candidates [1]. The angucycline-type polycyclic
compounds, representing one of the largest family of type II
polyketides, features a characteristic tetracyclic benz[a]
anthracene scaffold, which are derived via successive dec-
arboxylative Claisen condensations of an acetyl-CoA starter
unit and nine methylmalonyl-CoA extender units [2–4]. The
glycosylation using a combination of diverse sugar units at
different angucyline aglycone position creates a great
structural diversity for angucycline-type compounds [2, 5,
6]. These include landomycins, urdamycins, and saquaya-
mycin, which are well known for their unusual structural
features and potent antibacterial or antitumor bioactivities
[7–9].

During our effort to discover new/bioactive natural pro-
ducts from microbes, we found that S. sp. 120454 strain
mainly produce two major peaks based on chemical
profiling when using B medium (dextrin 40 g, tomato paste

7.5 g, NZ Amine 2.5 g, primary yeast 5 g in 1 L distilled
water) as fermentation medium. The large-scale fermenta-
tion was carried out at 30 °C for 7 days. The broth was
harvested, and extracted by ethyl acetate, yielding 3.62 g
brown crude extract, which was then fractionated and pur-
ified to afford compounds 1 and 2 (Fig. 1).

Compound 1 was isolated as a brown amorphous solid
with the molecular formula of C25H23NO7, as determined by
high-resolution ESIMS ([M+H]+ m/z= 450.1497), indi-
cating 15° of unsaturation. Initial interpretation of its MS,
1H, 13C NMR spectra (Table 1) indicated the structure of 1
was highly similar to mayamycin (2), an aguacycline-type
compound firstly isolated from a marine Streptomyces strain
[10], with the exception of lacking an N-methyl group on its
aminosugar moiety. Further elucidation of the 1D and 2D
NMR spectra confirmed the presence of an identical angu-
acycline aglycone to that in mayamycin (2). An aminosugar
moiety was evident by 1H-1H COSY correlations of H-1′/H-
2′/H-3′/H-4′/H-5′/H-6′ from its 1H-1H COSY spectrum,
and HMBC correlation of H-5′ (δH 3.56) with C-1′ (δC
72.5); as well as the NMR data comparison with those in 2.
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Fig. 1 Structures of compounds 1 and 2
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The linkage of this aminosugar moiety to angucycline was
through a rare C–C bond according to the HMBC correla-
tions of H-1′ with C-4a and C-6.

The stereochemistry of the sugar moiety was determined
by interpretation of its NOESY spectrum and J-coupling
constant. A large coupling constant (10.2 Hz) between H-1′
and H-2′a indicated an axial configuration of H-1′. The
strong NOE correlations of H-1′ with H-3′ and H-5′
revealed that all of these three protons are in axial positions.
Furthermore, H-4′ showed NOE correlations to H-2′a sug-
gested that H-4′ and H-2′a are also in axial position. Thus,
the relative configuration of the deduced aminosugar is 1′
R*, 3′R*, 4′S, and 5′R. The result indicates that compound 1

is an N-desmethyl derivative of mayamycin (2), accord-
ingly, compound 1 is designated as mayamycin B (Fig. 2).

Compound 2 was also isolated as a brown amorphous
solid, its structure is identified as mayamycin based on the
comparison of its NMR and HRESIMS data with the pub-
lished data [10, 11].

Mayamycin has been reported to show antibacterial
activities against a panel of pathogenic bacteria [10, 11].
Therefore, the antimicrobial activities of compounds 1 and
2 were tested against six pathogenic bacteria as shown in
Table 2. The result showed mayamycin B (1) showed potent
bioactivity against Micrococcus luteus with MIC value of
2.0 μM, whereas, its congener mayamycin A (2) only has
MIC value of 8.0 μM, suggesting the N-methyl group is
important to its activity.

We next aimed to identify mayamycin biosynthetic gene
cluster. To facilitate the process, the strain of Streptomyces
sp. 120454 was subjected to whole-genome sequencing by
Pacbio, yielding a 7.8 Mb linear chromosome with 71.5%
GC content. AntiSMASH analysis indicated at least thirty
one distinct secondary metabolite gene clusters were
encoded in its genome with only one type II polyketide
synthetic gene cluster, whose gene products show high
similarity to proteins involved in other angucycline
biosynthesis [2]. The putative may gene cluster spans a

Table 1 1H (600MHz) and 13C (125MHz) NMR data of 1 and 2 [10]
in methanol-d4

1 2

Position δC, mult. δH (J in Hz) δC, mult. δH (J in Hz)

1 156.5,C 156.5,C

2 114.3,CH 6.71,s 114.4,CH 6.74,s

3 143.5,C 143.4,C

3-CH3 22.5,CH3 2.43,s 22.6,CH3 2.45,s

4 117.2,CH 7.97,s 117.6,CH 8.00,s

4a 139.7,C 139.9,C

5 126.2,C 126.5,C

6 156.4,C 154.4,C

6a 138.7,C 138.4,C

7 194.2,C 194.2,C

7a 116.3,C 116.3,C

8 162.7,C 162.9,C

9 124.6,CH 7.25,d (8.3) 124.9,CH 7.29,dd (1.2,8.5)

10 138.5,CH 7.71,t (7.7) 138.8,CH 7.75,dd (7.5,8.5)

11 120.1,CH 7.55,d (7.3) 120.4,CH 7.58,dd (1.2,7.5)

11a 137.7,C 137.9,C

12 187.7,C 188.0,C

12a 119.2,C 119.4,C

12b 117.6,C 117.8,C

1′ 72.5,CH 5.69,dd
(10.4,1.8)

72.8,CH 5.70,dd (11.7,2.0)

2′a 34.7,CH2 2.49,m 32.9,CH2 2.35,ddd
(13.0,11.7)

2′b 34.7,CH2 2.19,m 32.9,CH2 2.27,ddd
(13.0,2.0,4.8)

3′ 55.3,CH 3.41,m 63.0,CH 3.23,br ddd
(4.8,11.7,9.0)

3′-N-CH3 31.4,CH3 2.63,s

4′ 74.5,CH 3.42,m 74.5,CH 3.41,t (9.0)

5′ 79.1,CH 3.56,m 79.2,CH 3.56,dq (9.0,6.1)

5′-CH3 18.4,CH3 1.42,d (6.1) 18.7,CH3 1.42,d (6.1)
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Fig. 2 Key 2D NMR correlations of 1

Table 2 Antibacterial activities of 1–2 (MIC, μM)

Pathogensa 1 2 Rifampicin

S. aureus 64.0 64.0 1.0

MRSA >128.0 >128.0 4.0

S. pyogenes 64.0 64.0 0.5

B. subtilis 64.0 64.0 1.0

P. aeruginosa 64.0 64.0 0.5

M. luteus 2.0 8.0 0.5

aS. aureus, MRSA, B. subtilis, S. pyogenes, P. aeruginosa, and M.
luteus represent Staphylococcus aureus CMCC(B)26003, Methicillin-
resistant Staphylococcus aureus (MRSA) ATCC43300, Bacillus
subtilis CICC10283, Streptococcus pyogenes ATCC19615, Pseudo-
monas aeruginosa CICC10351, and Micrococcus luteus CMCC(B)
28001, respectively
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23.2 kb contiguous DNA region consisting of 20 genes
responsible for biosynthesis, regulation, and transporter.
The nucleotide sequence have been deposited in the Gen-
bank under accession number MG601230.

Functional assignments for the gene products within may
gene cluster were made by sequence analysis through
BLAST comparison. Biosynthesis of angucycline aglycone
was initiated by the minimal type II PKS cassette, May16
(KSα), May15 (KSβ), and May14 (ACP) which utilize one
acetyl CoA and nine malonyl-CoA to form a linear poly-
ketide backbone. May12, May13, and May17 are homo-
logues to bifunctional cyclase/dehydrase JadD,
ketoreductase JadE, and polyketide cyclase JadI, respec-
tively, in jadomycin biosynthesis. It is thus anticipated that
the products of may12, may13, and may17 are sufficient for
the formation of tetracyclic ring [12–15]. The subsequent

two steps of dehydration followed by oxidation led to the
formation of desired aglycone (Fig. 3).

Six genes including may5, may6, may7, may9, may10,
and may22 encode proteins similar to Med-ORF16, Med-
ORF15, Med-ORF20, Med-ORF17, Med-ORF18, Med-
ORF14, which are essential for the biosynthesis of amino-
sugar moiety of medemycin (Table 3) [16], suggesting these
proteins were responsible for synthesizing aminosugar
moiety in compounds 1 and 2. A C-glycosyltransferase,
May21, catalyzes the final C-glycosylation step using either
3 or 4 as aminosugar donors to finally form 1 and 2 [16–19].

In summary, a new type II polyketide, mayamycin B (1),
together with its known congener mayamycin (2) were
isolated and characterized from Streptomyces sp. 120454.
Compound 1 showed potent antibacterial bioactivity against
Micrococcus luteus. Sequencing and bioinformatics
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analysis of S. sp. 120454 allow us to propose the biosyn-
thetic pathway of mayamycin for the first time.

Mayamycin B (1): dark brown amorphous solid; UV
(MeOH) λmax (lgε) 440 (2.83), 328 (3.02), 298 (2.98), 236
(3.26); IR (KBr) νmax cm

−1: 3250, 2922, 2857, 2360, 1608,
1420; 1H (600MHz) and 13C (150MHz) NMR data see
Table 1; HRESIMS m/z: 450.1497 [M+H]+ (calcd. for
C25H24NO7, 450.1508).
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