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Abstract
Formation of 15-membered azalactone by double reductive amination was analyzed using molecular mechanics and density
functional theory calculations for simplified model compounds. As a result, the following aspects were clarified. When
methylamine attacks a linear bis-aldehyde in the first step, there are possibilities that two regioisomers are formed. However,
one of them exhibited remarkably stable energy level compared with the other. The stable isomer indicated a short distance
between a methylamine moiety and an unreacted aldehyde. This short distance, about 2.3 Å, could be explained by hydrogen
bonding, which implied relatively easy cyclization in the second step. Moreover, this cyclization process was supposed to be
exothermic according to comparison of energy levels before and after cyclization.

Macrocyclic natural products [1] often display remarkable
biological activities and many of these compounds and their
derivatives are used as prescription medicines. Natural
products [1] commonly contain a medium- to large-sized
ring system, e.g., a 12-membered ring to a 20-membered
ring or a bigger-sized ring can be often observed. These are
more frequently encountered in natural than in synthetic
drugs. Although a variety of useful methodologies [2-4] to
construct a small-sized ring system had been reported

(Scheme 1S (supple)), we focused on approaches for pre-
paring a medium-sized ring system.

A variety of synthetic strategies for construction of a
medium-sized cyclic molecule has been also reported
(Fig. 1), although it is not easy to optimize a chemical
structure of a precursor and reaction conditions for cycli-
zation. Focusing on syntheses of 14- to 18-membered
macrolactones, macrolactonization was practically applied
as pioneer works by Tatsuta et al. [5] and Woodward et al.,
[6] and those reactions were precisely investigated. Based
on their research, Woodward et al. [6] and Yonemitsu and
colleagues [7-9] emphasized that certain structural feature
and cyclic protecting groups or favorable/suitable con-
formations in the seco acid were very important for efficient
macrolactonization. Other than a lactonization approach,
Horner–Wadsworth–Emmonms reaction/Wittig–Horner
reaction was reported as an alternative efficient macro-
cyclization by Tatsuta et al. [10] and Nakajima et al. [11]
Stille-type coupling cyclization [12] and an olefin metath-
esis approach [13] were also reported as novel strategies by
Nicolaou et al. Synthetic methodologies toward macro-
cycles were comprehensively introduced by Yu and Sun.
[14] As a characteristic example, macrocyclization [15] by
intramolecular Ullmann reaction has been reported in syn-
thetic studies of engelhardione.

As a variety of cyclization strategies for small-sized to
medium-sized ring constructions had been already reported,
we focused on an alternative approach, i.e., reductive
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amination (reductive alkylation) for novel medicinal
chemistry. This method is supposed to be useful, because its
reaction condition is relatively mild and there is no need to
protect hydroxyl groups. Although intramolecular reductive
amination in application of a linear amino aldehyde can
construct a cyclic molecule, double reductive amination
between a substituted amine and a linear bis-aldehyde also
makes it possible to directly prepare a cyclic molecule via
one-step. Syntheses of seven-membered molecules [16-19]
by this method, double reductive amination, had been
reported (Scheme 2S (supple)), but construction of a
medium-sized ring by this method had not been reported yet
when we started an azalide research [20, 21] program.
Accordingly, we planned to pursue macrolide antibiotic
drug discovery research in application of medium-sized aza-
macrocycles. As azithromycin [22] possessing an aza-
lactone (Scheme 1) is widely used in clinical sites as one of
major class of macrolide antibiotics, application of an aza-
lactone for macrolide drug discovery was thought to be
appropriate. Incidentally, synthesis of aza-macrocycles [23]
by nucleophilic ring closure without reductive amination
was reported in 1984.

In order to generate a novel macrolide containing a
medium-sized azalactone, we designed a linear bis-alde-
hyde, compound 2, as a precursor for double reductive
amination, because the 14- to 16-membered macrolide
antibiotics are widely used in clinical sites. The precursor
(2) [24] was easily prepared from tetraol 1 which was
synthesized from miokamycin in three steps as shown in
Scheme 1 (R= a neutral sugar). Our precursor possessed a
carbohydrate moiety, because a sugar unit could not be
easily introduced during the synthesis of macrolides. [25,

26] Several energy-related calculation results [27, 28] in
formation or ring strain of medium-sized rings have already
been reported. For example, lactone formation (Figure 1aS
(supple)) and ring strain (Figure 1cS (supple)) of 14- to 16-
membered rings exhibit stable energy levels. In other words,
it might be difficult to form 8- to 10-membered lactones
(Figure 1aS (supple)) and higher strains are estimated to be
in 8- to 11-membered cyclanes (Figure 1cS (supple)). On
the other hand, cyclic ether formation (Figure 1bS (supple))
of 14- and 16-membered rings implies synthetic difficulties.
However, difficulties in cyclization of medium-sized ring
by reductive amination had not been reported yet. Thus, we
were interested in the possibilities for cyclization of
medium-sized ring, especially 15-membered ring, by this
method.

We previously reported that we prepared a linear bis-
aldehyde (2) and isolated it as a pure single molecule, [24]
which was cyclized with benzylamine under optimized
conditions to afford desired 15-membered azalactone (4) in
10% yield (via 2 steps) as shown in Scheme 1. Synthesis of
a 15-membered azalactone by double reductive amination
was the first example. Deprotection of 4 afforded azalide (5)
possessing comparable antibacterial activities to those of
miokamycin. Partially optimized 15-membered azalides,
[24] compounds 6 and 7, exhibited 8 times stronger activ-
ities compared with miokamycin against susceptible
Streptococcus pneumoniae and Streptococcus pyogenes.
Compound 7 has ≥ 32 times stronger activities compared
with miokamycin against resistant S. pneumoniae with erm
gene (induced methylase type) as previously reported. As
described above, we clarified that these 15-membered aza-
lides were important information for further medicinal
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chemistry. These results encouraged us to analyze cycliza-
tion by double reductive amination with computational
chemistry. Syntheses of many kinds of azalides with a
medium-sized azalactone from 13- to 17-membered, such as
8a-, 9a-, and 11a-azalide have been reported, [29-36] but
synthesis of 10a-azalide such compounds 4–7, 10, and 11
has not been reported yet. In 1982, Ōmura et al. [37]
reported that the framework of the 16-membered macrolide,
JM/LM-A3, except an aldehyde group at the C-18 position,

was quite stable under hydride reduction conditions for
reductive amination.

Research purposes of this computational study are to
clarify the following three questions.

(i) Compound 2 possesses two aldehyde groups at the
C-10 and C-13 positions (Scheme 1). Which aldehyde
is attacked by an amine in the first reductive amination
step, the C-10 position or C-13?
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(ii) In the second reductive amination step, the compound
with an introduced amino group at C-10 or C-13
needs to adopt specific conformations for cyclization
in which the remaining aldehyde group and the
introduced amino group are located near each other.
Are these specific conformations observed in the low-
energy conformers?

(iii) Is the cyclization reaction exothermic or endothermic?

Accumulating answers to these three questions would be
useful to reveal scope and limitation of medium-sized ring
formation using double reductive amination and lead to a
prediction of medium-sized ring formation by computa-
tional study rather than synthetic experiments in near future.

As the chemical structures of reactant 2 and product 4 in
the cyclization reaction were too large to perform density
functional theory (DFT) calculations, their chemical struc-
tures had to be somewhat simplified. First, we used a sim-
pler reactant 3 without a neutral sugar moiety, instead of 2.
As the neutral sugar moiety of 2 seems to be far from the
cyclization site, this simplification would give little influ-
ence on calculations. When we replaced benzylamine with
methylamine hydrochloride, compound 2 gave azalactone
10 (Scheme 1) in 11% yield (via two steps) [24] by double
reductive amination. This yield was almost the same as
compound 4. Therefore, we used azalactone 12 (a simplified
compound of 10) as a product in our calculations.

Compound 12 differs from 10 only in that the former has no
neutral sugar moiety such as 3.

To examine questions (i) and (ii), we first constructed the
three-dimensional structures of model compounds 8a and
8b (Scheme 1) corresponding to compounds containing an
introduced methylamino group at the C10 and C13,
respectively, of model reactant 3. We next performed con-
formational search of the model compounds 8a and 8b in
vacuo by CONFLEX algorithm [38, 39] using CONFLEX 7
program (supple #1) with MMFF94s force field [40–46].
We obtained a total of more than 40,000 different con-
formers for each compound. Finally, we re-optimized the
top 10 most stable isomers optimized by MMFF94s of 8a
and 8b by DFT method (B3LYP) using the 6–31G(d) basis
set in vacuo (Table 1S (supple)) and in ethanol environment
(polarizable continuum model (PCM) [47]) using Gaussian
09 program (supple #2). We aimed to compare the energies
and structures of 8a and 8b more accurately in the experi-
mental conditions based on DFT calculations (supple #3).

The results are shown in Table 1. From the results of
DFT calculations, we found that compound 8b reacted at
the C-13 gave the most stable structure (No. 9), suggesting
that 8b would be a product in the first reductive amination
step. In addition, all of four lower energy conformations
(No. 1, 5, 6, and 9) (bold values) of 8b showed a short
distance of ~ 2.3 Å between a hydrogen atom in the
methylamino group and an oxygen atom in the aldehyde
group as shown in Table 1, indicating the hydrogen bonding
formation between these two groups. This hydrogen bond-
ing formation could keep these two functional groups in
proximity and facilitate the cyclization reaction. On the
other hand, no stable conformations with a hydrogen
bonding between methylamino and aldehyde groups could
be found in the compound 8a reacted at the C-10. Thus, we
could clarify questions (i) and (ii) as follows. Reaction of 3
and methylamine with hydride reagent in ethanol gives
precursor 8b, that is, an aldehyde at the C-13 is attacked by
an amine in the first reductive amination step. This finding
is also reasonable from steric hindrance viewpoints, as the
C-13 of 3 is less crowded. In addition, the precursor 8b
could adopt the energetically stable conformations where
the methylamino and aldehyde groups were in proximity to
each other for cyclization. The most stable three-
dimensional conformation of compound 8b (No. 9) is
shown in Fig. 2.

Next, we try to clarify question (iii). The lowest energy
structure of cyclized product 12 (Scheme 1) was determined
by the same procedure applied for compounds 8a and 8b. In
addition, we also examined cyclized forms of the precursor
8b, i.e., 9α and 9β (Scheme 1). We expected that the
cyclization step of 8b would be a rate-limiting step in the
second reductive amination step and considered 9α or 9β as
virtual intermediates to roughly estimate activation energy.

Table 1 Relative energya and distancea of compounds 8a and 8b by
MMFF94s and B3LYP/6–31G(d)

MMFF94s in vacuo B3LYP/6–31G(d) with PCM (ethanol)

8a 8b 8a 8b

No.b Energyc Energyc Energyd CHO-HN Energyd CHO-HN

1 0.00 0.00 3.81 10.36 0.33 2.31

2 0.23 0.43 3.81 10.36 5.24 10.43

3 0.68 0.49 4.74 10.34 5.46 10.37

4 0.83 0.49 3.68 10.27 5.45 10.38

5 1.03 0.61 3.68 10.27 1.13 2.31

6 1.20 0.72 4.87 10.61 1.44 2.30

7 1.49 0.73 4.57 10.33 4.54 2.30

8 1.61 0.81 5.14 10.35 5.78 9.87

9 1.77 0.89 4.09 10.38 0.00 2.26

10 1.83 1.04 6.43 9.31 6.44 10.38

aEnergy difference: kcal/mol; CHO-HN: Å
bThe number in order of stable conformational isomers by MMFF94s.
cRelative energy when No. 1 is set to 0.00 kcal/mol as a reference.
dRelative energy when No. 9 of compound 8b (− 2,648.247662 a.u.) is
set to 0.00 kcal/mol as a reference

Bold values conformations are supposed to be energy stable and
possible hydrogen bonding
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The results of DFT calculations for 9α, 9β and 12 are
provided (Table 2S (supple)). These results indicated that
the energy of the most stable conformation of 9α (No. 3)
was lower than that of 9β (No. 1), suggesting that 9α was
suitable as an intermediate. In consideration of energies of
H2 and H2O molecules, we obtained an energy profile for
cyclization of 8b to 12 through virtual intermediate state 9α
in ethanol environment as shown in Table 2 and Fig. 3. The
activation energy from the initial state consisting of 8b and
H2 to 9α was a relatively small value of +1.01 kcal/mol.
The most stable energy level in ethanol of the final state
including cyclized product 12 and H2O was remarkably
lower (–12.00 kcal/mol) than the initial state consisting of
8b and H2. This finding strongly suggested that this
reductive amination (the second step) proceeded toward
energy stable direction, which means, the reaction was
exothermic. The relatively small value of activation energy
and the exothermicity might explain that the reaction could
occur at around room temperature.

As described above, we examined the model cyclization
of 8b to 12 through intermediate state 9α using DFT

calculations. These calculations were found to be very time-
consuming, although we used somewhat simplified struc-
tures. If we had used more simplified structures, we could
have had lots of merit such as time saving. Thus, we finally
examined whether we could get appropriate results or not in
application of more simplified structures. Mono reductive
aminated molecules 13a and 13b were first designed instead
of 8a and 8b, respectively. Compounds 13a and 13b had
only an ester bond and a tetrahydropyran ring (Scheme 1).
Relative energy and focused distance of 13a and 13b were
obtained (Table 3S (supple)) using a similar computational
method used for 8a and 8b. These results were notably
similar to those of compounds 8a and 8b. Compound 13b
corresponding to 8b gave the most stable structure and
possessed lower energy conformations where the methyla-
mino and aldehyde groups were in proximity to each other
for cyclization (Fig. 2S (supple)). Accordingly, we could
obtain the same conclusion that methylamine was supposed
to attack the C-13 aldehyde preferably compared with the
C-10 aldehyde as in the case of 8a and 8b. Next, we
examined the second reductive amination step using more

Fig. 2 Stereo view of the most
stable three-dimensional
conformation of compound 8b
(No. 9). A Relative position
between an N-Me group and an
aldehyde group is visually easy
to understand. B The view of B
is obtained by 90° rotation of A
around the horizontal axis. An
overall framework of 8b is easy
to understand

Table 2 Energy* profile of sequence cyclization, compound 8b to 12 via virtual intermediate 9α

H2 H2O 8b 9α 12 ΔEcycle ΔEtotal**

In vacuo − 1.175482 − 76.408953 − 2648.225569 − 2,648.223537 − 2,573.004145 1.28 − 7.56

Ethanol − 1.175565 − 76.415980 − 2,648.247662 − 2,648.246052 − 2,573.026376 1.01 − 12.00

*Total energy of each molecule (a.u.)
**{(– 2,573.026376–76.415980)–(– 2,648.247662–1.175565)}× 627.51= – 12.00 (in ethanol)
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simplified model compounds 14α, 14β, and 15 corre-
sponding to 9α, 9β, and 12 (Table 4S (supple)). The
resulting energy profile for cyclization of 13b to 15 was also
very similar to that for cyclization of 8b to 12, that is, the
activation energy was estimated to be + 1.87 kcal/mol and
the most stable energy level in ethanol of the final state
including cyclized product 15 and H2O was remarkably
lower (–12.23 kcal/mol) than the initial state consisting of
13b and H2 (Table 5S and Fig. 3S (supple)). These results
led us to the same conclusion that this reductive amination
(the second step) proceeded toward energy stable direction
as in the case from 8b to 12. Thus, it may be useful to use
dramatically simplified forms like 13a and 13b instead of
compounds 8a and 8b, in order to reduce calculation time.
On the other hand, fully simplified compound 16 provided
us with only limited information (supple #4), because a
yield of cyclization reaction was known to be greatly
affected by a substituent [48].

In conclusion, our computational study indicated the
following facts. (i) The first step of practical reductive
amination reaction from 2 to 10 was determined as an attack
of methylamine at the C-13 aldehyde. (ii) In the second step
of reductive amination for cyclization, the methylamino
group at the C-13 and the aldehyde group at the C-10 are
located very closely due to hydrogen bonding. (iii) The
sequential cyclization was categorized as exothermic. (iv)

Using adequate simplified forms would reduce the calcu-
lation time. From now on, applying the above computa-
tional study to novel molecules may make it possible to
predict to some extent the easiness or difficulty of con-
structing a medium-sized ring by double reductive amina-
tion without information by synthetic experiments. On the
other hand, we have to accumulate further information on
the possibility of double reductive amination for cyclization
reaction of 8- to 14-membered rings and 16- or more
membered rings using both theoretical calculations and
synthetic experiments. This would allow us to discuss
correlations between calculations and experiments in near
future.

As formation of 15- or 16-membered azalactone by
double reductive amination is low yield but practical for
medicinal chemists (not for process chemists), application
of these reactions in novel medicinal chemistry of biologi-
cally important macromolecules is expected to be effective
also in future.
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