Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

High-strength, conductive, double-network self-healing antibacterial hydrogel based on the coordination bond and dynamic imine bond

Abstract

Multifunctional hydrogel materials are being increasingly used in wearable sensing devices and biomedical applications, but the comprehensive performance of hydrogel materials must be further developed. To prepare hydrogels with better self-healing properties, biomacromolecules such as sodium alginate and carboxymethyl chitosan were used as raw materials by combining the dynamic imine bonding network formed by both materials with the coordination bonding network formed by acrylic acid and aluminum ions. The double network structure of the hydrogel provides the hydrogel with excellent self-healing properties (up to 127% recovery of toughness after self-healing) and good mechanical properties with a fracture strain of 3787%. Substances with antimicrobial properties in the hydrogel network inhibited the growth of E. coli and S. aureus. In addition, the hydrogel has good electrical conductivity with a conductivity of 1.41 S/m. This study examined multiple properties of the hydrogel and provides a reference for the application of this material in practical application scenarios.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Calvert P. Hydrogels for soft machines. Adv Mater. 2009;21:743–56. https://doi.org/10.1002/adma.200800534

    Article  CAS  Google Scholar 

  2. Taylor DL, In Het Panhuis M. Self-healing hydrogels. Adv Mater. 2016;28:9060–93. https://doi.org/10.1002/adma.201601613

    Article  PubMed  CAS  Google Scholar 

  3. Li S, Dong S, Xu W, Tu S, Yan L, Zhao C, et al. Antibacterial hydrogels. Adv Sci (Weinh). 2018;5:1700527 https://doi.org/10.1002/advs.201700527

    Article  PubMed  CAS  Google Scholar 

  4. Tang L, Wu S, Qu J, Gong L, Tang J. A review of conductive hydrogel used in flexible strain sensor. Materials. 2020;13:3947. https://doi.org/10.3390/ma13183947

  5. Li L, Scheiger JM, Levkin PA. Design and applications of photoresponsive hydrogels. Adv Mater. 2019;31:1807333.1–7. https://doi.org/10.1002/adma.201807333

  6. Ma S, Yu B, Pei X, Zhou F. Structural hydrogels. Polymer. 2016;98:516–35. https://doi.org/10.1016/j.polymer.2016.06.053

    Article  CAS  Google Scholar 

  7. Wang Y. Programmable hydrogels. Biomaterials. 2018;178:663–80. https://doi.org/10.1016/j.biomaterials.2018.03.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Cheng W, Wu X, Zhang Y, Wu D, Meng L, Chen Y, et al. Recent applications of hydrogels in food safety sensing: Role of hydrogels. Trends Food Sci Technol. 2022;129:244–57. https://doi.org/10.1016/j.tifs.2022.10.004

    Article  CAS  Google Scholar 

  9. Yao X, Liu J, Yang C, Yang X, Wei J, Xia Y, et al. Hydrogel paint. Adv Mater. 2019;31:1903062. https://doi.org/10.1002/adma.201903062

  10. Khajouei S, Ravan H, Ebrahimi A. DNA hydrogel-empowered biosensing. Adv Colloid Interf Sci. 2020;275:102060. https://doi.org/10.1016/j.cis.2019.102060

  11. Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern wound dressings: hydrogel dressings. Biomedicines. 2021;9:1235. https://doi.org/10.3390/biomedicines9091235

  12. Li J, Mooney DJ. Designing hydrogels for controlled drug delivery. Nat Rev Mater. 2016;1:16071. https://doi.org/10.1038/natrevmats.2016.71

  13. Guan X, Avci-Adali M, Alarcin E, Cheng H, Kashaf SS, Li Y, et al. Development of hydrogels for regenerative engineering. Biotechnol J. 2017;12:1600394. https://doi.org/10.1002/biot.201600394

  14. Yang B, Song J, Jiang Y, Li M, Wei J, Qin J, et al. Injectable adhesive self-healing multicross-linked double-network hydrogel facilitates full-thickness skin wound healing. ACS Appl Mater Interfaces. 2020;12:57782–97. https://doi.org/10.1021/acsami.0c18948

    Article  PubMed  CAS  Google Scholar 

  15. He J, Zhang Z, Yang Y, Ren F, Li J, Zhu S, et al. Injectable self-healing adhesive ph-responsive hydrogels accelerate gastric hemostasis and wound healing. Nano-Micro Lett. 2021;13:80. https://doi.org/10.1007/s40820-020-00585-0

  16. Chen J, He J, Yang Y, Qiao L, Hu J, Zhang J, et al. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing. Acta Biomaterialia. 2022;146:119–30. https://doi.org/10.1016/j.actbio.2022.04.041

    Article  PubMed  CAS  Google Scholar 

  17. Yang K, Zhou X, Li Z, Wang Z, Luo Y, Deng L, et al. Ultrastretchable, self-healable, and tissue-adhesive hydrogel dressings involving nanoscale tannic acid/ferric ion complexes for combating bacterial infection and promoting wound healing. ACS Appl Mater Interfaces. 2022;14:43010–25. https://doi.org/10.1021/acsami.2c13283

    Article  PubMed  CAS  Google Scholar 

  18. Deng P, Yao L, Chen J, Tang Z, Zhou J. Chitosan-based hydrogels with injectable, self-healing and antibacterial properties for wound healing. Carbohydrate Polym. 2022;276. https://doi.org/10.1016/j.carbpol.2021.118718

  19. Liu C, Xu Z, Chandrasekaran S, Liu Y, Wu M. Self-healing, antibacterial, and conductive double network hydrogel for strain sensors. Carbohydrate Polym. 2023;303. https://doi.org/10.1016/j.carbpol.2022.120468

  20. Wang Z, Zhang X, Cao T, Wang T, Sun L, Wang K, et al. Antiliquid-interfering, antibacteria, and adhesive wearable strain sensor based on superhydrophobic and conductive composite hydrogel. ACS Appl. Mater. Interf. 2021;13:46022–32. https://doi.org/10.1021/acsami.1c15052

  21. Wu L, Li L, Pan L, Wang H, Bin Y. MWCNTs reinforced conductive, self-healing polyvinyl alcohol/carboxymethyl chitosan/oxidized sodium alginate hydrogel as the strain sensor. J Appl Polym Sci. 2021;138. https://doi.org/10.1002/app.49800

  22. Chen J, Li S, Zhang Y, Wang W, Zhang X, Zhao Y, et al. A reloadable self-healing hydrogel enabling diffusive transport of c-dots across gel-gel interface for scavenging reactive oxygen species. Adv. Healthcare Mater. 2017;1700746. https://doi.org/10.1002/adhm.201700746

  23. Zhao L, Ke T, Ling Q, Liu J, Li Z, Gu H. Multifunctional ionic conductive double-network hydrogel as a long-term flexible strain sensor. ACS Appl Polym Mater. 2021;3:5494–508. https://doi.org/10.1021/acsapm.1c00805

    Article  CAS  Google Scholar 

  24. Pan J, Jin Y, Lai S, Shi L, Fan W, Shen Y. An antibacterial hydrogel with desirable mechanical, self-healing and recyclable properties based on triple-physical crosslinking. Chem Eng J. 2019;370:1228–38. https://doi.org/10.1016/j.cej.2019.04.001

    Article  CAS  Google Scholar 

  25. Ma Y, Yao J, Liu Q, Han T, Zhao J, Ma X, et al. Liquid bandage harvests robust adhesive, hemostatic, and antibacterial performances as a first‐aid tissue adhesive. Adv Funct Mater. 2020;30. https://doi.org/10.1002/adfm.202001820

  26. Wang H, Chen X, Wen Y, Li D, Sun X, Liu Z, et al. A study on the correlation between the oxidation degree of oxidized sodium alginate on its degradability and gelation. Polymers. 2022;14:1679. https://doi.org/10.3390/polym14091679

  27. Gomez CG, Rinaudo M, Villar MA. Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydr Polym. 2007;67:296–304. https://doi.org/10.1016/j.carbpol.2006.05.025

    Article  CAS  Google Scholar 

  28. Anjum S, Gurave P, Badiger MV, Torris A, Tiwari N, Gupta B. Design and development of trivalent aluminum ions induced self-healing polyacrylic acid novel hydrogels. Polymer. 2017;126:196–205. https://doi.org/10.1016/j.polymer.2017.08.045

    Article  CAS  Google Scholar 

  29. Klosinski KK, Wach RA, Girek-Bak MK, Rokita B, Kolat D, Kaluzinska-Kolat Z, et al. Biocompatibility and mechanical properties of carboxymethyl chitosan hydrogels. Polymers. 2022;15:144. https://doi.org/10.3390/polym15010144

  30. Cao J, Wu P, Cheng Q, He C, Chen Y, Zhou J. Ultrafast fabrication of self-healing and injectable carboxymethyl chitosan hydrogel dressing for wound healing. ACS Appl Mater Interfaces. 2021;13:24095–105. https://doi.org/10.1021/acsami.1c02089

    Article  PubMed  CAS  Google Scholar 

  31. Zhao X, Wu H, Guo B, Dong R, Qiu Y, Ma PX. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials. 2017;122:34–47. https://doi.org/10.1016/j.biomaterials.2017.01.011

    Article  PubMed  CAS  Google Scholar 

  32. Gupta B, Tummalapalli M, Deopura BL, Alam MS. Preparation and characterization of in-situ crosslinked pectin-gelatin hydrogels. Carbohydr Polym. 2014;106:312–8. https://doi.org/10.1016/j.carbpol.2014.02.019

    Article  PubMed  CAS  Google Scholar 

  33. Li T, Hu X, Zhang Q, Zhao Y, Wang P, Wang X, et al. Poly(acrylic acid)-chitosan @ tannic acid double-network self-healing hydrogel based on ionic coordination. Polym Adv Technol. 2020;31:1648–60. https://doi.org/10.1002/pat.4893

    Article  CAS  Google Scholar 

  34. Wei Z, Yang JH, Liu ZQ, Xu F, Zhou JX, Zrínyi M, et al. Novel biocompatible polysaccharide-based self-healing hydrogel. Adv Funct Mater. 2015;25:1352–9. https://doi.org/10.1002/adfm.201401502

    Article  CAS  Google Scholar 

  35. Shin M, Shin S-H, Lee M, Kim HJ, Jeong JH, Choi YH, et al. Rheological criteria for distinguishing self-healing and non-self-healing hydrogels. Polymer 2021;229. https://doi.org/10.1016/j.polymer.2021.123969

  36. Bolatchiev A. Antibacterial activity of human defensins against Staphylococcus aureus and Escherichia coli. PeerJ. 2020;8. https://doi.org/10.7717/peerj.10455

  37. Marin L, Ailincai D, Mares M, Paslaru E, Cristea M, Nica V, et al. Imino-chitosan biopolymeric films. Obtaining, self-assembling, surface and antimicrobial properties. Carbohydr Polym. 2015;117:762–70. https://doi.org/10.1016/j.carbpol.2014.10.050

    Article  PubMed  CAS  Google Scholar 

  38. Cao Z, Luo Y, Li Z, Tan L, Liu X, Li C, et al. Macromol Biosci. Macromol Biosci. 2021;21:e2000252. https://doi.org/10.1002/mabi.202000252

    Article  PubMed  CAS  Google Scholar 

  39. Ginting M, Pasaribu SP, Masmur I, Kaban J, Hestina. Self-healing composite hydrogel with antibacterial and reversible restorability conductive properties. Rsc Adv. 2020;10:5050–7. https://doi.org/10.1039/d0ra00089b

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Lin Z, Fan D, Li G, He L, Qin X, Zhao B, et al. Antibacterial, adhesive, and conductive hydrogel for diabetic wound healing. Macromol Biosci. 2023;23. https://doi.org/10.1002/mabi.202200349

  41. Zhao X, Wang H, Luo J, Ren G, Wang J, Chen Y, et al. Ultrastretchable, adhesive, anti-freezing, conductive, and self-healing hydrogel for wearable devices. Acs Appl Polym Mater. 2022;4:1784–93. https://doi.org/10.1021/acsapm.1c01618

    Article  CAS  Google Scholar 

  42. Min J, Zhou Z, Zheng J, Yan C, Sha H, Hong M, et al. Self-healing, water-retaining, antifreeze, conductive PVA/PAA-PAM-IS/GC composite hydrogels for strain and temperature sensors. Macromol Mater Eng. 2022;307. https://doi.org/10.1002/mame.202100948

  43. Fan X, Geng J, Wang Y, Gu H, PVA/gelatin/beta-CD-based rapid self-healing supramolecular dual-network conductive hydrogel as bidirectional strain sensor. Polymer. 2022;246. https://doi.org/10.1016/j.polymer.2022.124769

  44. Yao X, Zhang S, Qian L, Wei N, Nica V, Coseri S, et al. Super stretchable, self-healing, adhesive ionic conductive hydrogels based on tailor-made ionic liquid for high-performance strain sensors. Adv Funct Mater. 2022;32. https://doi.org/10.1002/adfm.202204565

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (42076193) and the Ningbo Science and Technology Bureau (202002N3061).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sui Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41428_2024_957_MOESM1_ESM.docx

High strength, conductive, double network self-healing antibacterial hydrogel based on coordination bond and dynamic imine bond

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chang, J., Guo, Z. et al. High-strength, conductive, double-network self-healing antibacterial hydrogel based on the coordination bond and dynamic imine bond. Polym J (2024). https://doi.org/10.1038/s41428-024-00957-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00957-y

Search

Quick links