Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ion-conductive properties and lithium battery performance of composite polymer electrolytes filled with lignin derivatives

Abstract

Lignin is the most abundant aromatic material in the Earth’s terrestrial ecosystems. However, very few studies have been conducted on the potential application of lignin derivatives as fillers for electrolytes in lithium batteries to determine cell performance. Herein, a novel electrochemically stable composite polymer electrolyte (CPE) containing a lignin derivative and dilignol was exploited for battery application for the first time. The lignin derivatives improved both the ionic conductivity and mechanical performance of the polymer-based electrolytes. The resulting alterations in the coordination number led to enhanced Li+ mobility and consequently, increased conductivity. Notably, the LiFePO4/Li cell had good stability and recovery capacity, and the Coulombic efficiency was approximately 100%, with a capacity of more than 150 mAh g−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dorrestijn E, Laarhoven LJJ, Arends IWCE, Mulder P. Occurrence and reactivity of phenoxyl linkages in lignin and low rank coal. J Anal Appl Pyrolysis. 2000;54:153–92.

    Article  CAS  Google Scholar 

  2. Kai D, Chow LP, Loh XJ. Lignin and its properties. Function materials from lignin: methods and advances. 2018. p. 1–28. https://doi.org/10.1142/9781786345219_0001.

  3. Chatterjee S, Saito T. Lignin-derived advanced carbon materials. ChemSusChem. 2015;8:3941–58.

    Article  CAS  PubMed  Google Scholar 

  4. Adler, E. Lignin chemistry - past, present and future. Wood Sci. Technol. 1977;11:169–218.

  5. Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.

    Article  CAS  PubMed  Google Scholar 

  6. Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:2–7.

    Article  Google Scholar 

  7. Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M et al. A lithium superionic conductor. Nat Mater. 2011;10:682–6.

    Article  CAS  PubMed  Google Scholar 

  8. Li J, Ma C, Chi M, Liang C, Dudney NJ. Solid electrolyte: the key for high-voltage lithium batteries. Adv Energy Mater. 2015;5:1–6.

    Article  Google Scholar 

  9. Fu X, Yu D, Zhou J, Li S, Gao X, Han Y et al. Inorganic and organic hybrid solid electrolytes for lithium-ion batteries. CrystEngComm. 2016;18:4236–58.

    Article  CAS  Google Scholar 

  10. Kim HW, Manikandan P, Lim YJ, Kim JH, Nam SC, Kim Y. Hybrid solid electrolyte with the combination of Li7La3Zr2O12ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion batteries. J Mater Chem A. 2016;4:17025–32.

    Article  CAS  Google Scholar 

  11. Kim JK, Lim YJ, Kim H, Cho GB, Kim Y. A hybrid solid electrolyte for flexible solid-state sodium batteries. Energy Environ Sci 2015;8:3589–96.

    Article  CAS  Google Scholar 

  12. Santhanagopalan D, Qian D, McGilvray T, Wang Z, Wang F, Camino F et al. Interface limited lithium transport in solid-state batteries. J Phys Chem Lett. 2014;5:298–303.

    Article  CAS  PubMed  Google Scholar 

  13. Muench S, Wild A, Friebe C, Häupler B, Janoschka T, Schubert US. Polymer-based organic batteries. Chem Rev. 2016;116:9438–84.

    Article  CAS  PubMed  Google Scholar 

  14. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B. Polymer electrolytes: present, past and future. Electrochim Acta. 2011;57:4–13.

    Article  Google Scholar 

  15. Hallinan DT, Balsara NP. Polymer electrolytes. Annu Rev Mater Res. 2013;43:503–25.

    Article  CAS  Google Scholar 

  16. Zhang H, Li C, Piszcz M, Coya E, Rojo T, Rodriguez-Martinez LM et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem Soc Rev. 2017;46:797–815.

    Article  CAS  PubMed  Google Scholar 

  17. Fenton DE, Parker JM, Wright PV. Complexes of alkali metal ions with poly(ethylene oxide). Polymer. 1973;14:589.

    Article  CAS  Google Scholar 

  18. Takeoka S, Ohno H, Tsuchida E. Recent advancement of ion-conductive polymers. Polym Adv Technol. 1993;4:53–73.

    Article  CAS  Google Scholar 

  19. Appetecchi GB, Croce F, Persi L, Ronci F, Scrosati B. Transport and interfacial properties of composite polymer electrolytes. Electrochim Acta. 2000;45:1481–90.

    Article  CAS  Google Scholar 

  20. Armand MB. Polymer electrolytes. Annu Rev Mater Res. 1986;16:245–61.

    Article  CAS  Google Scholar 

  21. Tominaga Y, Yamazaki K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem Commun. 2014;50:4448–50.

    Article  CAS  Google Scholar 

  22. Ratner MA, Shriver DF. Ion transport in solvent-free polymers. Chem Rev. 1988;88:109–24.

    Article  CAS  Google Scholar 

  23. Munshi MZA, Owens BB, Nguyen S. Measurement of Li+ ion transport number in poly(ethylene oxide)-LiX complexes. Polym J. 1988;20:597–602.

    Article  CAS  Google Scholar 

  24. Zhang X, Fedkiw PS. Ionic transport and interfacial stability of sulfonate-modified fumed silicas as nanocomposite electrolytes. J Electrochem Soc. 2005;152:A2413–A2420.

    Article  CAS  Google Scholar 

  25. Croce F, Appetecchi GB, Persi L, Scrosati B. Nanocomposite polymer electrolytes for lithium batteries. Nature. 1998;394:456–8.

    Article  CAS  Google Scholar 

  26. Fan L-Z, Hu Y-S, Bhattacharyya AJ, Maier J. Succinonitrile as a versatile additive for polymer electrolytes. Adv Funct Mater. 2007;17:2800–7.

    Article  CAS  Google Scholar 

  27. Bhide A, Hariharan K. Ionic transport studies on (PEO)6:NaPO3 polymer electrolyte plasticized with PEG400. Eur Polym J. 2007;43:4253–70.

    Article  CAS  Google Scholar 

  28. Lin D, Liu W, Liu Y, Lee HR, Hsu P-C, Liu K et al. High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2 nanospheres in poly(ethylene oxide). Nano Lett. 2015;16:459–65.

    Article  PubMed  Google Scholar 

  29. Li Z, Matsumoto H, Tominaga Y. Composite poly(ethylene carbonate) electrolytes with electrospun silica nanofibers. Polym Adv Technol. 2018;29:820–4.

    Article  CAS  Google Scholar 

  30. Forsyth M, MacFarlane DR, Best A, Adebahr J, Jacobsson P, Hill AJ. The effect of nano-particle TiO2 fillers on structure and transport in polymer electrolytes. Solid State Ion. 2002;147:203–11.

    Article  CAS  Google Scholar 

  31. Singh TJ, Bhat SV. Increased lithium-ion conductivity in (PEG)46LiClO4 solid polymer electrolyte with δ-Al2O3 nanoparticles. J Power Sources. 2004;129:280–7.

    Article  CAS  Google Scholar 

  32. Zhang W, Yin J, Lin Z, Lin H, Lu H, Wang Y et al. Facile preparation of 3D hierarchical porous carbon from lignin for the anode material in lithium ion battery with high rate performance. Electrochim Acta. 2015;176:1136–42.

    Article  CAS  Google Scholar 

  33. Wang SX, Yang L, Stubbs LP, Li X, He C. Lignin-derived fused electrospun carbon fibrous mats as high performance anode materials for lithium ion batteries. ACS Appl Mater Interfaces. 2013;5:12275–82.

    Article  CAS  PubMed  Google Scholar 

  34. Chen T, Hu J, Zhang L, Pan J, Liu Y, Cheng YT. High performance binder-free SiOx/C composite LIB electrode made of SiOx and lignin. J Power Sources. 2017;362:236–42.

    Article  CAS  Google Scholar 

  35. Ma Y, Chen K, Ma J, Xu G, Dong S, Chen B et al. A biomass based free radical scavenger binder endowing a compatible cathode interface for 5 V lithium-ion batteries. Energy Environ Sci. 2019;12:273–80.

    Article  Google Scholar 

  36. Gong SD, Huang Y, Cao HJ, Lin YH, Li Y, Tang SH et al. A green and environment-friendly gel polymer electrolyte with higher performances based on the natural matrix of lignin. J Power Sources. 2016;307:624–33.

    Article  CAS  Google Scholar 

  37. Liu B, Huang Y, Cao H, Song A, Lin Y, Wang M et al. A high-performance and environment-friendly gel polymer electrolyte for lithium ion battery based on composited lignin membrane. J Solid State Electrochem. 2017;22:807–16.

    Article  Google Scholar 

  38. Baroncini EA, Rousseau DM, Strekis CA, Stanzione JF. Viability of low molecular weight lignin in developing thiol-ene polymer electrolytes with balanced thermomechanical and conductive properties. Macromol Rapid Commun. 2021;42:2000477.

    Article  CAS  Google Scholar 

  39. Jeong D, Shim J, Shin H, Lee J-C. Sustainable lignin-derived cross-linked graft polymers as electrolyte and binder materials for lithium metal batteries. ChemSusChem. 2020;13:2642–9.

    Article  CAS  PubMed  Google Scholar 

  40. Liu H, Mulderrig L, Hallinan D, Chung H. Lignin-based solid polymer electrolytes: lignin-graft-poly(ethylene glycol). Macromol Rapid Commun. 2021;42:1–6.

    Article  Google Scholar 

  41. Wang S, Zhang L, Wang A, Liu X, Chen J, Wang Z et al. Polymer-laden composite lignin-based electrolyte membrane for high-performance lithium batteries. ACS Sustain Chem Eng. 2018;6:14460–9.

    Article  CAS  Google Scholar 

  42. Xia S, Yang B, Zhang H, Yang J, Liu W, Zheng S. Ultrathin layered double hydroxide nanosheets enabling composite polymer electrolyte for all-solid-state lithium batteries at room temperature. Adv Funct Mater. 2021;31:1–11.

    Article  Google Scholar 

  43. Kubo S, Kadla JF. Effect of poly(ethylene oxide) molecular mass on miscibility and hydrogen bonding with lignin. Holzforschung. 2006;60:245–52.

    Article  CAS  Google Scholar 

  44. Kubo S, Kadla JF. Poly(ethylene oxide)/organosolv lignin blends: relationship between thermal properties, chemical structure, and blend behavior. Macromolecules. 2004;37:6904–11.

    Article  CAS  Google Scholar 

  45. Kubo S, Kadla JF. Kraft lignin/poly(ethylene oxide) blends: Effect of lignin structure on miscibility and hydrogen bonding. J Appl Polym Sci. 2005;98:1437–44.

    Article  CAS  Google Scholar 

  46. Liu Z, Shikinaka K, Otsuka Y, Tominaga Y. Enhanced ionic conduction in composite polymer electrolytes filled with plant biomass “lignin”. Chem Commun. 2022;58:4504–7.

    Article  CAS  Google Scholar 

  47. Kadla JF, Kubo S. Miscibility and hydrogen bonding in blends of poly(ethylene oxide) and kraft lignin. Macromolecules. 2003;36:7803–11.

    Article  CAS  Google Scholar 

  48. Matsushita Y, Oyabu Y, Aoki D, Fukushima K. Unexpected polymerization mechanism of dilignol in the lignin growing. R Soc Open Sci. 2019;6:190445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shi Z, Zhou J, Li R. Application of reaction force field molecular dynamics in lithium batteries. Front Chem. 2021;8:1–5.

    Article  CAS  Google Scholar 

  50. Tan W, Tominaga Y. Modeling analysis of ionic solvation structure in concentrated poly(ethylene carbonate) electrolytes. Electrochim Acta. 2023;464:142875.

    Article  CAS  Google Scholar 

  51. Kadla JF, Kubo S. Lignin-based polymer blends: analysis of intermolecular interactions in lignin-synthetic polymer blends. Compos Part A Appl Sci Manuf. 2004;35:395–400.

    Article  Google Scholar 

  52. Soongprasit K, Sricharoenchaikul V, Atong D. Phenol-derived products from fast pyrolysis of organosolv lignin. Energy Rep. 2020;6:151–67.

    Article  Google Scholar 

  53. Jayaramudu T, Ko HU, Kim HC, Kim JW, Choi ES, Kim J. Adhesion properties of poly(ethylene oxide)-lignin blend for nanocellulose composites. Compos Part B Eng. 2019;156:43–50.

    Article  CAS  Google Scholar 

  54. Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H et al. Lithium bis(fluorosulfonyl)imide/poly(ethylene oxide) polymer electrolyte. Electrochim Acta. 2014;133:529–38.

    Article  CAS  Google Scholar 

  55. Chen HW, Jiang CH, Wu HD, Chang FC. Hydrogen bonding effect on the poly(ethylene oxide), phenolic resin, and lithium perchlorate-based solid-state electrolyte. J Appl Polym Sci 2004;91:1207–16.

    Article  CAS  Google Scholar 

  56. Guo L, Dou R, Wu Y, Zhang R, Wang L, Wang Y et al. From lignin waste to efficient catalyst: illuminating the impact of lignin structure on catalytic activity of cycloaddition reaction. ACS Sustain Chem Eng 2019;7:16585–94.

    Article  CAS  Google Scholar 

  57. Liu Y, Lee JY, Hong L. In situ preparation of poly(ethylene oxide)–SiO2 composite polymer electrolytes. J Power Sources. 2004;129:303–11.

    Article  CAS  Google Scholar 

  58. Meghnani D, Gupta H, Singh SK, Srivastava N, Mishra R, Tiwari RK et al. Fabrication and electrochemical characterization of lithium metal battery using IL-based polymer electrolyte and Ni-rich NCA cathode. Ionics. 2020;26:4835–51.

    Article  CAS  Google Scholar 

  59. Reddy MJ, Chu PP, Rao UVS. Study of multiple interactions in mesoporous composite PEO electrolytes. J Power Sources. 2006;158:614–9.

  60. Manuel Stephan A, Nahm KS. Review on composite polymer electrolytes for lithium batteries. Polymer. 2006;47:5952–64.

    Article  Google Scholar 

  61. Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem Rev. 2004;104:4303–418.

    Article  CAS  PubMed  Google Scholar 

  62. Bruce PG, Vincent CA. Polymer electrolytes. J Chem Soc Faraday Trans. 1993;89:3187–203.

    Article  CAS  Google Scholar 

  63. Meyer WH. Polymer electrolytes for lithium-ion batteries. Adv Mater. 1998;10:439–48.

    Article  CAS  PubMed  Google Scholar 

  64. Zhu L, Zhu P, Fang Q, Jing M, Shen X, Yang L. A novel solid PEO/LLTO-nanowires polymer composite electrolyte for solid-state lithium-ion battery. Electrochim Acta. 2018;292:718–26.

    Article  CAS  Google Scholar 

  65. Zhang Y, Wang CY, Tang X. Cycling degradation of an automotive LiFePO4 lithium-ion battery. J Power Sources. 2011;196:1513–20.

    Article  CAS  Google Scholar 

  66. Lopez J, Mackanic DG, Cui Y, Bao Z. Designing polymers for advanced battery chemistries. Nat Rev Mater. 2019;4:312–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported financially by grants from JST-Mirai R&D (Grant Number JPMJMI19E8), and JSPS KAKENHI (Grant Number 23K23057).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Tominaga.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Karasawa, T., Tan, W. et al. Ion-conductive properties and lithium battery performance of composite polymer electrolytes filled with lignin derivatives. Polym J (2024). https://doi.org/10.1038/s41428-024-00941-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00941-6

Search

Quick links