Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Preparation of small-pore UF membranes with high porosity by modulating the size of nano-CaCO3 in a casting solution

Abstract

High-performance ultrafiltration (UF) membranes show significant potential for high selectivity and permeation. In the present study, small-pore polyethersulfone (PES) UF membranes with narrow size distributions and high surface porosities were successfully prepared from PES casting solutions that contained nano-CaCO3 particles of different sizes and were coagulated in a HCl solution. The nano-CaCO3 particles with different sizes (22.8–6.3 nm) were produced by modulating the HCl/nano-CaCO3 molar ratio in the casting solution. The size of the nano-CaCO3 particles and the amount of CaCl2 produced synergistically affected the viscosity of the casting solution; in addition, these factors regulated the structure and performance of the PES UF membranes. The obtained membranes exhibited small pore sizes with narrow pore size distributions and high surface porosities, as well as high water flux and bovine serum albumin (BSA) rejection. The optimized membrane had a surface pore size of 9.8 nm with an FWHM of 5.5 nm and a high surface porosity of 12.8%. The membrane also exhibited a high water permeance of 737.2 L·m−2·h−1·bar−1 with a BSA rejection of 99.3%, which surpassed those reported for PES membranes in the literature. This work provided a simple and effective method for preparing high-performance UF membranes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The data will be made available upon request.

References

  1. Xiarchos I, Doulia D, Gekas V, Trägårdh G. Polymeric Ultrafiltration Membranes and Surfactants. Sep Purif Rev 2003;32:215–78. https://doi.org/10.1081/spm-120026628.

    Article  CAS  Google Scholar 

  2. Long YJ, Hai T, Zan XZ, Wen LN. Enhanced mechanical strength and performance of sulfonated polysulfone/Tröger’s base polymer blend ultrafiltration membrane. J Membr Sci. 2021;625:119138. https://doi.org/10.1016/j.memsci.2021.119138.

    Article  CAS  Google Scholar 

  3. Liu YP, Wang J, Wang Y, Zhu HC, Xu XM, Liu T, et al. High-flux robust PSf-b-PEG nanofiltration membrane for the precise separation of dyes and salts. Chem Eng J. 2021;405:127051. https://doi.org/10.1016/j.cej.2020.127051.

    Article  CAS  Google Scholar 

  4. Lin HR, Hai ZS. Membrgao JXeotpotsapopu, Effect of additives on the performance and morphology of copoly (phthalazinone ether sulfone) UF membrane. Desalination. 2012;290:67–73. https://doi.org/10.1016/j.desal.2012.01.005.

    Article  CAS  Google Scholar 

  5. Elsaid K, Olabi AG, Abdel-Wahab A, Elkamel A, Alami AH, Inayat A, et al. Membrane processes for environmental remediation of nanomaterials: Potentials and challenges. Sci Total Environ. 2023;879:162569. https://doi.org/10.1016/j.scitotenv.2023.162569.

    Article  CAS  PubMed  Google Scholar 

  6. Fu GH, Guo SJ, Hua LS, Le S, Long LX, Hua ZJ, et al. ‘Green’ fabrication of PVC UF membranes with robust hydrophilicity and improved pore uniformity. Desalination. 2023;568:117022. https://doi.org/10.1016/j.desal.2023.117022.

    Article  CAS  Google Scholar 

  7. Liu Y, Kodama T, Kojima T, Taniguchi I, Seto H, Miura Y, et al. Fine-tuning of the surface porosity of micropatterned polyethersulfone membranes prepared by phase separation micromolding. Polym J. 2019;52:397–403. https://doi.org/10.1038/s41428-019-0298-9.

    Article  CAS  Google Scholar 

  8. Maruf SH, Wang L, Greenberg AR, Pellegrino J, Ding Y. Use of nanoimprinted surface patterns to mitigate colloidal deposition on ultrafiltration membranes. J Membr Sci. 2013;428:598–607. https://doi.org/10.1016/j.memsci.2012.10.059.

    Article  CAS  Google Scholar 

  9. Goh PS, Ng BC, Lau WJ, Ismail AF. Inorganic Nanomaterials in Polymeric Ultrafiltration Membranes for Water Treatment. Sep Purif Rev. 2014;44:216–49. https://doi.org/10.1080/15422119.2014.926274.

    Article  CAS  Google Scholar 

  10. Samari M, Zinadini S, Zinatizadeh AA, Jafarzadeh M, Gholami F. Designing of a novel polyethersulfone (PES) ultrafiltration (UF) membrane with thermal stability and high fouling resistance using melamine-modified zirconium-based metal-organic framework (UiO-66-NH2/MOF). Sep Purif Technol. 2020;251:117010. https://doi.org/10.1016/j.seppur.2020.117010.

    Article  CAS  Google Scholar 

  11. Tofighy MA, Mohammadi T. Functional charcoal based nanomaterial with excellent colloidal property for fabrication of polyethersulfone ultrafiltration membrane with improved flux and fouling resistance. Mater Chem Phys. 2022;285:126167. https://doi.org/10.1016/j.matchemphys.2022.126167.

    Article  CAS  Google Scholar 

  12. Pakan M, Mirabi M, Valipour A. Effectiveness of different CuO morphologies nanomaterials on the permeability, antifouling, and mechanical properties of PVDF/PVP/CuO ultrafiltration membrane for water treatment. Chemosphere. 2023;337:139333. https://doi.org/10.1016/j.chemosphere.2023.139333.

    Article  CAS  PubMed  Google Scholar 

  13. Almanassra IW, Jaber L, Chatla A, Abushawish A, Shanableh A, Ali Atieh M. Unveiling the relationship between MOF porosity, particle size, and polyethersulfone membranes properties for efficient decontamination of dye and organic matter. Chem Eng J. 2023;471:144616. https://doi.org/10.1016/j.cej.2023.144616.

    Article  CAS  Google Scholar 

  14. Nain A, Sangili A, Hu SR, Chen CH, Chen YL, Chang HT. Recent progress in nanomaterial-functionalized membranes for removal of pollutants. iScience. 2022;25:104616. https://doi.org/10.1016/j.isci.2022.104616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abdullah RR, Shabeed KM, Alzubaydi AB, Alsalhy QF. Novel photocatalytic polyether sulphone ultrafiltration (UF) membrane reinforced with oxygen-deficient Tungsten Oxide (WO2.89) for Congo red dye removal. Chem Eng Res Des. 2022;177:526–40. https://doi.org/10.1016/j.cherd.2021.11.015.

    Article  CAS  Google Scholar 

  16. Liu T-Y, Tong Y, Liu Z-H, Lin H-H, Lin Y-K, Van Der Bruggen B, et al. Extracellular polymeric substances removal of dual-layer (PES/PVDF) hollow fiber UF membrane comprising multi-walled carbon nanotubes for preventing RO biofouling. Sep Purif Technol. 2015;148:57–67. https://doi.org/10.1016/j.seppur.2015.05.004.

    Article  CAS  Google Scholar 

  17. Abdel-Karim A, Leaper S, Alberto M, Vijayaraghavan A, Fan X, Holmes SM, et al. High flux and fouling resistant flat sheet polyethersulfone membranes incorporated with graphene oxide for ultrafiltration applications. Chem Eng J. 2018;334:789–99. https://doi.org/10.1016/j.cej.2017.10.069.

    Article  CAS  Google Scholar 

  18. Li Z, Das S, Sekine T, Mabuchi H, Kaneko R, Sakai J, et al. Control over the Hydrophilicity in the Pores of Covalent Organic Framework Membranes for High-Flux Separation of Dyes from Water. ACS Appl Nano Mater. 2022;5:17632–9. https://doi.org/10.1021/acsanm.2c03392.

    Article  CAS  Google Scholar 

  19. Nair AK, Isloor AM, Kumar R, Ismail AF. Antifouling and performance enhancement of polysulfone ultrafiltration membranes using CaCO3 nanoparticles. Desalination. 2013;322:69–75. https://doi.org/10.1016/j.desal.2013.04.031.

    Article  CAS  Google Scholar 

  20. Jaber L, Almanassra IW, Abushawish A, Chatla A, Ihsanullah I, Ali MM, et al. Pioneering Biofouling Resistant PES UF Membrane with MnFe2O4/g-C3N4 Nanocomposite: Insight into Mechanisms and Fouling Dynamics. J Membr Sci. 2024;691:122259. https://doi.org/10.1016/j.memsci.2023.122259.

    Article  CAS  Google Scholar 

  21. Nasrollahi N, Vatanpour V, Aber S, Mahmoodi NM. Preparation and characterization of a novel polyethersulfone (PES) ultrafiltration membrane modified with a CuO/ZnO nanocomposite to improve permeability and antifouling properties. Sep Purif Technol. 2018;192:369–82. https://doi.org/10.1016/j.seppur.2017.10.034.

    Article  CAS  Google Scholar 

  22. Becker H, Herzberg F, Schulte A, Kolossa-Gehring M. The carcinogenic potential of nanomaterials, their release from products and options for regulating them. Int J Hyg Environ Health. 2011;214:231–8. https://doi.org/10.1016/j.ijheh.2010.11.004.

    Article  CAS  PubMed  Google Scholar 

  23. Cheng B, Lei M, Yu J, Zhao X. Preparation of monodispersed cubic calcium carbonate particles via precipitation reaction. Mater Lett. 2004;58:1565–70. https://doi.org/10.1016/j.matlet.2003.10.027.

    Article  CAS  Google Scholar 

  24. Melbiah JSB, Nithya D, Mohan D. Surface modification of polyacrylonitrile ultrafiltration membranes using amphiphilic Pluronic F127/CaCO3 nanoparticles for oil/water emulsion separation. Colloids Surf A. 2017;516:147–60. https://doi.org/10.1016/j.colsurfa.2016.12.008.

    Article  CAS  Google Scholar 

  25. Zaliman SQ, Zakaria NA, Ahmad AL, Leo CP. 3D-imprinted superhydrophobic polyvinylidene fluoride membrane contactor incorporated with CaCO3 nanoparticles for carbon capture. Sep Purif Technol. 2022;287:120519. https://doi.org/10.1016/j.seppur.2022.120519.

    Article  CAS  Google Scholar 

  26. Gao MT, Wang SH, Ji YH, Cui ZY, Yan F, Younas M, et al. Regulating surface-pore structure of PES UF membrane by addition of “active” nano-CaCO3. J Ind Eng Chem. 2022;111:247–54. https://doi.org/10.1016/j.jiec.2022.04.004.

    Article  CAS  Google Scholar 

  27. Bei P, Liu H, Yao H, Hu A, Sun Y, Guo L. Preparation and characterization of PVDF/CaCO3 composite membranes etched by hydrochloric acid. Environ Sci Pollut R. 2019;26:33607–20. https://doi.org/10.1007/s11356-019-06402-5.

    Article  CAS  Google Scholar 

  28. Wang SH, Li Q, He BQ, Gao MT, Ji YH, Cui ZY, et al. Preparation of Small-Pore Ultrafiltration Membranes with High Surface Porosity by In Situ CO2 Nanobubble-Assisted NIPS. ACS Appl Mater Interfaces. 2022;14:8633–43. https://doi.org/10.1021/acsami.1c23760.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang L, Cui ZY, Hu MY, Mo YH, Li SW, He BQ, et al. Preparation of PES/SPSf blend ultrafiltration membranes with high performance via H2O-induced gelation phase separation. J Membr Sci. 2017;540:136–45. https://doi.org/10.1016/j.memsci.2017.06.044.

    Article  CAS  Google Scholar 

  30. Song CY, Tang SY, Yue SZ, Cui ZY, Du X, Jiang T, et al. Design of microstructure for hollow fiber loose nanofiltration separation layer and its compactness-tailoring mechanism. J Hazard Mater. 2022;421:126800. https://doi.org/10.1016/j.jhazmat.2021.126800.

    Article  CAS  PubMed  Google Scholar 

  31. Bian L, Shen C, Song CY, Zhang S, Cui ZY, Yan F, et al. Compactness-tailored hollow fiber loose nanofiltration separation layers based on “chemical crosslinking and metal ion coordination” for selective dye separation. J Membr Sci. 2021;620:118948. https://doi.org/10.1016/j.memsci.2020.118948.

    Article  CAS  Google Scholar 

  32. Jiang M, Ye KF, Deng JJ, Lin JY, Ye WY, Zhao SF, et al. Conventional Ultrafiltration As Effective Strategy for Dye/Salt Fractionation in Textile Wastewater Treatment. Environ Sci Technol. 2018;52:10698–708. https://doi.org/10.1021/acs.est.8b02984.

    Article  CAS  PubMed  Google Scholar 

  33. Greenlee LF, Rentz NS. Influence of nanoparticle processing and additives on PES casting solution viscosity and cast membrane characteristics. Polymer. 2016;103:498–508. https://doi.org/10.1016/j.polymer.2016.04.021.

    Article  CAS  Google Scholar 

  34. Wang SH, Liang QY, Liu YY, He BQ, Ji YH, Cui ZY, et al. Facilely prepare high-performance loose nanofiltration membranes through regulation of polymer chain entanglements. Sep Purif Technol. 2023;318:123964. https://doi.org/10.1016/j.seppur.2023.123964.

    Article  CAS  Google Scholar 

  35. Li HX, Wu HY, Zhang WF, Zhao XY, Zhang LQ, Gao YY. Rheological mechanism of polymer nanocomposites filled with spherical nanoparticles: Insight from molecular dynamics simulation. Polymer. 2021;231:124129. https://doi.org/10.1016/j.polymer.2021.124129.

    Article  CAS  Google Scholar 

  36. Yang S, Liu ZZ. Preparation and characterization of polyacrylonitrile ultrafiltration membranes. J Membr Sci. 2003;222:87–98. https://doi.org/10.1016/s0376-7388(03)00220-5.

    Article  CAS  Google Scholar 

  37. Liu Z, Mi Z, Jin S, Wang C, Wang D, Zhao X, et al. The influence of sulfonated hyperbranched polyethersulfone-modified halloysite nanotubes on the compatibility and water separation performance of polyethersulfone hybrid ultrafiltration membranes. J Membr Sci. 2018;557:13–23. https://doi.org/10.1016/j.memsci.2018.04.019.

    Article  CAS  Google Scholar 

  38. Li PP, Thankamony RL, Li X, Li Z, Liu XW, Lai ZP. Nanoporous polyethersulfone membranes prepared by mixed solvent phase separation method for protein separation. J Membr Sci. 2021;635:119507. https://doi.org/10.1016/j.memsci.2021.119507.

    Article  CAS  Google Scholar 

  39. Kusworo TD, Kumoro AC, Aryanti N, Utomo DP. Removal of organic pollutants from rubber wastewater using hydrophilic nanocomposite rGO-ZnO/PES hybrid membranes. J Environ Chem Eng. 2021;9:106421. https://doi.org/10.1016/j.jece.2021.106421.

    Article  CAS  Google Scholar 

  40. Nasrollahi N, Aber S, Vatanpour V, Mahmoodi NM. The effect of amine functionalization of CuO and ZnO nanoparticles used as additives on the morphology and the permeation properties of polyethersulfone ultrafiltration nanocomposite membranes. Compos Part B. 2018;154:388–409. https://doi.org/10.1016/j.compositesb.2018.09.027.

    Article  CAS  Google Scholar 

  41. Wang HH, Jung JT, Kim JF, Kim S, Drioli E, Lee YM. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS). J Membr Sci. 2019;574:44–54. https://doi.org/10.1016/j.memsci.2018.12.051.

    Article  CAS  Google Scholar 

  42. Koulivand H, Shahbazi A, Vatanpour V, Rahmandoust M. Development of carbon dot-modified polyethersulfone membranes for enhancement of nanofiltration, permeation and antifouling performance. Sep Purif Technol. 2020;230:115895. https://doi.org/10.1016/j.seppur.2019.115895.

    Article  CAS  Google Scholar 

  43. Irfan M, Idris A, Yusof NM, Khairuddin NFM, Akhmal H. Surface modification and performance enhancement of nano-hybrid f-MWCNT/PVP90/PES hemodialysis membranes. J Membr Sci. 2014;467:73–84. https://doi.org/10.1016/j.memsci.2014.05.001.

    Article  CAS  Google Scholar 

  44. Kallem P, Othman I, Ouda M, Hasan SW, Alnashef I, Banat F. Polyethersulfone hybrid ultrafiltration membranes fabricated with polydopamine modified ZnFe2O4 nanocomposites: Applications in humic acid removal and oil/water emulsion separation. Process Saf Environ Prot. 2021;148:813–24. https://doi.org/10.1016/j.psep.2021.02.002.

    Article  CAS  Google Scholar 

  45. Zhu K, Mu YF, Zhang MH, Liu Y, Na RQ, Xu WH, et al. Mixed matrix membranes decorated with in situ self-assembled polymeric nanoparticles driven by electrostatic interaction. J Mater Chem A. 2018;6:7859–70. https://doi.org/10.1039/c8ta00317c.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Tianjin Major Science and Technology Program (Grant No. 22ZXSYSY00020), the Natural Science Foundation of Hebei Province (Grant No. B2023110019), the National Natural Science Foundation of China (Grant No. 22178268), and the Cangzhou Institute of Tiangong University (Grant No. TGCYY-F-0208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benqiao He.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Wang, S., Liu, Y. et al. Preparation of small-pore UF membranes with high porosity by modulating the size of nano-CaCO3 in a casting solution. Polym J (2024). https://doi.org/10.1038/s41428-024-00938-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00938-1

Search

Quick links