Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Morphologies of polymer chains spun onto solid substrates

Abstract

External fields are often present when polymers contact solids, potentially affecting chain adsorption onto a substrate. The adsorbed chains, which are difficult to relax thermally, could semipermanently influence the dynamics of the surrounding chains and bulk chains. In this study, we examined the effect of a force field induced by spin coating on the adsorption of a model polymer chain, DNA. Observations using atomic force microscopy indicated that the morphologies of adsorbed chains were affected not only by the force field but also by the incubation time (tinc) after deposition and before spinning. A longer tinc caused a greater amount of chains to transition from being present in two-dimensional random coil states to stretched states. Conversely, shorter tinc values resulted in many chains being adsorbed in a stretched state. The orientations of the stretched chains reflected the presence of competition between the effects of the centrifugal force and those of the flow rate gradient. At tinc = 0, the adsorbed chains were stretched, and they exhibited many kinks. It was anticipated that this macromolecular information could aid in controlling buried morphologies near solid surfaces and in fabricating promising materials, such as polymer composites and layered organic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Balazs AC, Emrick T, Russell TP. Nanoparticle polymer composites: where two small worlds meet. Science. 2006;314:1107–10.

    Article  CAS  PubMed  Google Scholar 

  2. Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM. Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater. 2007;6:278–82.

    Article  CAS  PubMed  Google Scholar 

  3. Holt AP, Bocharova V, Cheng S, Kisliuk AM, White BT, Saito T, et al. Controlling interfacial dynamics: covalent bonding versus physical adsorption in polymer nanocomposites. ACS Nano. 2016;10:6843–52.

    Article  CAS  PubMed  Google Scholar 

  4. Bailey EJ, Winey KI. Dynamics of polymer segments, polymer chains, and nanoparticles in polymer nanocomposite melts: a review. Prog Polym Sci. 2020;105:101242.

    Article  CAS  Google Scholar 

  5. Morimune-Moriya S. Polymer/nanocarbon nanocomposites with enhanced properties. Polym J. 2022;54:977–84.

    Article  CAS  Google Scholar 

  6. Miyata T, Kawagoe Y, Okabe T, Jinnai H. Morphologies of polymer chains adsorbed on inorganic nanoparticles in a polymer composite as revealed by atomic-resolution electron microscopy. Polym J. 2022;54:1297–306.

    Article  CAS  Google Scholar 

  7. Morimitsu Y, Matsuno H, Oda Y, Yamamoto S, Tanaka K. Direct visualization of cooperative adsorption of a string-like molecule onto a solid. Sci Adv. 2022;8:eabn6349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fujigaya T. Development of polymer-wrapping methods for functionalization of carbon materials. Polym J. 2023;55:181–91.

    Article  CAS  Google Scholar 

  9. Oyaizu K. Reversible and high-density energy storage with polymers populated with bistable redox sites. Polym J. 2024;56:127–44.

    Article  CAS  Google Scholar 

  10. Yamaguchi A, Uematsu H, Sakaguchi T, Hashimoto T. Effects of different types of functionalized polypropylenes on the tensile strength of short carbon fiber-reinforced polypropylene composites. Polym J. 2024;56:205–14.

    Article  CAS  Google Scholar 

  11. Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ. Adhesion of polymers. Prog Polym Sci. 2009;34:948–68.

    Article  CAS  Google Scholar 

  12. Wei H, Xia J, Zhou W, Zhou L, Hussain G, Li Q, et al. Adhesion and cohesion of epoxy-based industrial composite coatings. Compos B Eng. 2020;193:108035.

    Article  CAS  Google Scholar 

  13. Nobayashi M, Shikinaka K, Kaneko Y. Preparation of double-chain polysiloxane by template polymerization and the coexistence of water repellency and adhesion to glass in its cast film. Polym J. 2022;54:11–20.

    Article  CAS  Google Scholar 

  14. Inutsuka M, Watanabe H, Aoyagi M, Yamada NL, Tanaka C, Ikehara T, et al. Effect of oligomer segregation on the aggregation state and strength at the polystyrene/substrate interface. ACS Macro Lett. 2022;11:504–9.

    Article  CAS  PubMed  Google Scholar 

  15. Gaire B, Wilson MC, Singla S, Dhinojwala A. Connection between molecular interactions and mechanical work of adhesion. ACS Macro Lett. 2022;11:1285–90.

    Article  CAS  PubMed  Google Scholar 

  16. Nguyen HK, Shundo A, Liang X, Yamamoto S, Tanaka K, Nakajima K. Unraveling nanoscale elastic and adhesive properties at the nanoparticle/epoxy interface using bimodal atomic force microscopy. ACS Appl Mater Interfaces. 2022;14:42713–22.

    Article  CAS  PubMed  Google Scholar 

  17. Xiao Z, Zhao Q, Niu Y, Zhao D. Adhesion advances: from nanomaterials to biomimetic adhesion and applications. Soft Matter. 2022;18:3447–64.

    Article  CAS  PubMed  Google Scholar 

  18. Barba BJD, Seko N, Madrid JF, Penaloza DP. Modified abaca fiber prepared by radiation-induced graft polymerization as a reinforcement for unsaturated polyester resin composites. Polym J. 2024;56:97–105.

    Article  CAS  Google Scholar 

  19. Aragishi K, Takeda Y, Suzuki Y, Matsumoto A. Study on the deformation and fracture of epoxy monoliths through mechanical tensile and compressive tests and X-ray CT imaging. Polym J. 2024;56:529–40.

    Article  CAS  Google Scholar 

  20. Aizawa M, Akiyama H, Matsuzawa Y, Shishido A. Reusable dismantlable adhesion interfaces induced by photodimerization and thermo/photocleavage reactions. Polym J. 2024;56:401–8.

    Article  CAS  Google Scholar 

  21. de Gennes PG. Polymer solutions near an interface. 1. adsorption and depletion layers. Macromolecules. 1981;14:1637–44.

    Article  Google Scholar 

  22. Douglas JF, Johnson HE, Granick S. A simple kinetic model of polymer adsorption and desorption. Science. 1993;262:2010–2.

    Article  CAS  PubMed  Google Scholar 

  23. Hoeve CAJ, Dimarzio EA, Peyser P. Adsorption of polymer molecules at low surface coverage. J Chem Phys. 2004;42:2558.

    Article  Google Scholar 

  24. Napolitano S, Wübbenhorst M. The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun. 2011;2:260.

    Article  Google Scholar 

  25. Lin EY, Frischknecht AL, Winey KI, Riggleman RA. Effect of surface properties and polymer chain length on polymer adsorption in solution. J Chem Phys. 2021;155:034701.

    Article  CAS  PubMed  Google Scholar 

  26. Hong Y, Li Y, Wang F, Zuo B, Wang X, Zhang L, Kawaguchi D, Tanaka K. Enhanced thermal stability of polystyrene by interfacial noncovalent interactions. Macromolecules. 2018;51:5620–27.

    Article  CAS  Google Scholar 

  27. Morimitsu Y, Salatto D, Jiang N, Sen M, Nishitsuji S, Yavitt BM, et al. Structurally neutral” densely packed homopolymer-adsorbed chains for directed self-assembly of block copolymer thin films. Macromolecules. 2019;52:5157–67.

    Article  CAS  Google Scholar 

  28. Yang DS, Chung K, Kim J. Controlled alignment of polymer chains near the semiconductor-dielectric interface. Org Electron. 2020;76:105484.

    Article  CAS  Google Scholar 

  29. Saito M, Ito K, Yokoyama H. Negative interfacial energies of dynamic polymer brush interfaces: a discussion of the free energy balance. Polym J. 2023;55:897–902.

    Article  CAS  Google Scholar 

  30. Yamane H, Oura M, Kawaguchi D, Nitta K, Sekizawa O, Ishikawa T, et al. Depth analysis of local conformation in poly(methyl methacrylate) adsorbed onto SiOx studied by soft X-ray absorption spectroscopy combined with an Ar gas cluster ion beam. Polym J. 2024;56:215–20.

    Article  CAS  Google Scholar 

  31. Bansal A, Yang H, Li C, Cho K, Benicewicz BC, Kumar SK, et al. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater. 2005;4:693–8.

    Article  CAS  PubMed  Google Scholar 

  32. Riggleman RA, Toepperwein G, Papakonstantopoulos GJ, Barrat J-L, de Pablo JJ. Entanglement network in nanoparticle reinforced polymers. J Chem Phys. 2009;130:244903.

    Article  PubMed  Google Scholar 

  33. Krutyeva M, Wischnewski A, Monkenbusch M, Willner L, Maiz J, Mijangos C, et al. Effect of nanoconfinement on polymer dynamics: surface layers and interphases. Phys Rev Lett. 2013;110:1–5.

    Google Scholar 

  34. Popov I, Carroll B, Bocharova V, Genix A-C, Cheng S, Khamzin A, et al. Strong reduction in amplitude of the interfacial segmental dynamics in polymer nanocomposites. Macromolecules. 2020;53:4126–35.

    Article  CAS  Google Scholar 

  35. Eguchi H, Hayashi H, Nagata K. Electrical conductivities and mechanical properties of porous cellulose nanofiber/reduced graphene oxide composites prepared with postreduction processes. Polym J. 2024;56:185–92.

    Article  CAS  Google Scholar 

  36. Stickney PB, Falb RD. Carbon black-rubber interactions and bound rubber. Rubber Chem Technol. 1964;37:1299–340.

    Article  Google Scholar 

  37. Pliskin I, Tokita N. Bound rubber in elastomers: analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems. J Appl Polym Sci. 1972;16:473–92.

    Article  CAS  Google Scholar 

  38. Vondráček P, Schätz M. Bound rubber and “crepe hardening” in silicone rubber. J Appl Polym Sci. 1977;21:3211–22.

    Article  Google Scholar 

  39. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. The effect of interfacial dynamics on the bulk mechanical properties of rubber composites. Polym J. 2020;52:217–23.

    Article  CAS  Google Scholar 

  40. Salatto D, Carrillo J-MY, Endoh MK, Taniguchi T, Yavitt BM, Masui T, et al. Structural and dynamical roles of bound polymer chains in rubber reinforcement. Macromolecules. 2021;54:11032–46.

    Article  CAS  Google Scholar 

  41. Choi J, Hore MJA, Meth JS, Clarke N, Winey KI, Composto RJ. Universal scaling of polymer diffusion in nanocomposites. ACS Macro Lett. 2013;2:485–90.

    Article  CAS  PubMed  Google Scholar 

  42. Starr FW, Douglas JF, Meng D, Kumar SK. Bound layers “cloak” nanoparticles in strongly interacting polymer nanocomposites. ACS Nano. 2016;10:10960–5.

    Article  CAS  PubMed  Google Scholar 

  43. Forrest JA, Dalnoki-Veress K, Dutcher JR. Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E. 1997;56:5705–16.

    Article  CAS  Google Scholar 

  44. Crosby AJ, Lee JY. Polymer nanocomposites: the “nano” effect on mechanical properties. Polym Rev. 2007;47:217–29.

    Article  CAS  Google Scholar 

  45. Chen Z. Investigating buried polymer interfaces using sum frequency generation vibrational spectroscopy. Prog Polym Sci. 2010;35:1376–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Milchev A. Single-polymer dynamics under constraints: scaling theory and computer experiment. J Phys Condens Matter. 2011;23:103101.

    Article  PubMed  Google Scholar 

  47. Hsu H-P, Binder K. Effect of chain stiffness on the adsorption transition of polymers. Macromolecules. 2013;46:2496–515.

    Article  CAS  Google Scholar 

  48. Merling WL, Mileski JB, Douglas JF, Simmons DS. The glass transition of a single macromolecule. Macromolecules. 2016;49:7597–604.

    Article  CAS  Google Scholar 

  49. Zuo B, Zhou H, Davis MJB, Wang X, Priestley RD. Effect of local chain conformation in adsorbed nanolayers on confined polymer molecular mobility. Phys Rev Lett. 2019;122:217801.

    Article  CAS  PubMed  Google Scholar 

  50. Huang J, Zhou J, Liu M. Interphase in polymer nanocomposites. JACS Au. 2022;2:280–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Scheutjens JMHM, Fleer GJ. Statistical theory of the adsorption of interacting chain molecules. 2. train, loop, and tail size distribution. J Phys Chem. 1980;84:178–90.

    Article  CAS  Google Scholar 

  52. Lösche M, Schmitt J, Decher G, Bouwman WG, Kjaer K. Detailed structure of molecularly thin polyelectrolyte multilayer films on solid substrates as revealed by neutron reflectometry. Macromolecules. 1998;31:8893–906.

    Article  Google Scholar 

  53. Fujii Y, Yang Z, Leach J, Atarashi H, Tanaka K, Tsui OKC. Affinity of polystyrene films to hydrogen-passivated silicon and its relevance to the Tg of the films. Macromolecules. 2009;42:7418–22.

    Article  CAS  Google Scholar 

  54. Gin P, Jiang N, Liang C, Taniguchi T, Akgun B, Satija SK, et al. Revealed architectures of adsorbed polymer chains at solid-polymer melt interfaces. Phys Rev Lett. 2012;109:265501.

    Article  PubMed  Google Scholar 

  55. Füllbrandt M, Purohit PJ, Schönhals A. Combined FTIR and dielectric investigation of poly(vinyl acetate) adsorbed on silica particles. Macromolecules. 2013;46:4626–32.

    Article  Google Scholar 

  56. Fryer DS, Peters RD, Kim EJ, Tomaszewski JE, de Pablo JJ, Nealey PF, et al. Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules. 2001;34:5627–34.

    Article  CAS  Google Scholar 

  57. Tanaka K, Tateishi Y, Okada Y, Nagamura T, Doi M, Morita H. Interfacial mobility of polymers on inorganic solids. J Phys Chem B. 2009;113:4571–7.

    Article  CAS  PubMed  Google Scholar 

  58. Wong JSS, Hong L, Chul Bae S, Granick S. Polymer surface diffusion in the dilute limit. Macromolecules. 2011;44:3073–6.

    Article  CAS  Google Scholar 

  59. Papon A, Montes H, Hanafi M, Lequeux F, Guy L, Saalwächter K. Glass-transition temperature gradient in nanocomposites: evidence from nuclear magnetic resonance and differential scanning calorimetry. Phys Rev Lett. 2012;108:65702.

    Article  Google Scholar 

  60. Inutsuka M, Horinouchi A, Tanaka K. Aggregation states of polymers at hydrophobic and hydrophilic solid interfaces. ACS Macro Lett. 2015;4:1174–8.

    Article  CAS  PubMed  Google Scholar 

  61. Wei T, Torkelson J. M. Molecular weight dependence of the glass transition temperature (Tg)-confinement effect in well-dispersed poly(2-vinyl pyridine)–silica nanocomposites: comparison of interfacial layer Tg and matrix Tg. Macromolecules. 2020;53:8725–36.

    Article  CAS  Google Scholar 

  62. Uchida K, Mita K, Yamamoto S, Tanaka K. Conformational relaxation of ethylene-propylene-diene terpolymer at a solid interface. Polym J. 2023;55:683–90.

    Article  CAS  Google Scholar 

  63. Yu C, Granick S. Revisiting polymer surface diffusion in the extreme case of strong adsorption. Langmuir. 2014;30:14538–44.

    Article  CAS  PubMed  Google Scholar 

  64. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. Reorientation kinetics of local conformation of polyisoprene at substrate interface. ACS Macro Lett. 2018;7:85–9.

    Article  CAS  PubMed  Google Scholar 

  65. Nguyen HK, Sugimoto S, Konomi A, Inutsuka M, Kawaguchi D, Tanaka K. Dynamics gradient of polymer chains near a solid interface. ACS Macro Lett. 2019;8:1006–11.

    Article  CAS  PubMed  Google Scholar 

  66. Tanaka K, Takahara A, Kajiyama T. Surface molecular motion in thin films of poly(styrene-block-methyl methacrylate) diblock copolymer. Acta Polym. 1995;46:476–82.

    Article  CAS  Google Scholar 

  67. Kumaki J, Nishikawa Y, Hashimoto T. Visualization of single-chain conformations of a synthetic polymer with atomic force microscopy. J Am Chem Soc. 1996;118:3321–2.

    Article  CAS  Google Scholar 

  68. Minko S, Kiriy A, Gorodyska G, Stamm M. Mineralization of single flexible polyelectrolyte molecules. J Am Chem Soc. 2002;124:10192–7.

    Article  CAS  PubMed  Google Scholar 

  69. Sheiko SS, Sun FC, Randall A, Shirvanyants D, Rubinstein M, Lee H, Il, et al. Adsorption-induced scission of carbon-carbon bonds. Nature 2006;440:191–4.

    Article  CAS  PubMed  Google Scholar 

  70. Kawaguchi D, Nishu T, Takano A, Matsushita Y. Direct observation of an isolated cyclic sodium poly(styrenesulfonate) molecule by atomic force microscopy. Polym J. 2007;39:271–5.

    Article  CAS  Google Scholar 

  71. Anzai T, Kawauchi M, Kawauchi T, Kumaki J. Crystallization behavior of single isotactic poly(methyl methacrylate) chains visualized by atomic force microscopy. J Phys Chem B. 2015;119:338–47.

    Article  CAS  PubMed  Google Scholar 

  72. Oda Y, Kawaguchi D, Morimitsu Y, Yamamoto S, Tanaka K. Direct observation of morphological transition for an adsorbed single polymer chain. Sci Rep. 2020;10:20914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Liang X. Visualization of nanomechanical properties of polymer composites using atomic force microscopy. Polym J. 2023;55:913–20.

    Article  CAS  Google Scholar 

  74. Doi Y, Hara M, Seki T, Takano A, Ishida T, Uneyama T, et al. Preparation and characterization of two-dimensional sheet-shaped poly(methyl methacrylate) synthesized via γ-ray polymerization in nanoclay template. Polym J. 2023;55:957–65.

    Article  CAS  Google Scholar 

  75. Ono M, Nakajima K. Influence of thermal treatment on the elastic modulus of a nano-dispersed elastomer domain in an injection-molded isotactic polypropylene/thermoplastic elastomer binary blend. Polym J. 2024;56:87–96.

    Article  CAS  Google Scholar 

  76. Lederberg EM, Lederberg J. Genetic studies of lysogenicity in Escherichia coli. Genetics. 1953;38:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Saenger W. Principles of nucleic acid structure. 1st ed. New York: Springer-Verlag; (1984).

  78. Netz HH, Orland H. Variational charge renormalization in charged systems. EPJ E. 2003;11:301–11.

    CAS  Google Scholar 

  79. Guilbaud S, Salomé L, Destainville N, Manghi M, Tardin C. Dependence of DNA persistence length on ionic strength and ion type. Phys Rev Lett. 2019;122:1–6.

    Article  Google Scholar 

  80. Harris, Millman CR, van der Walt KJ, Gommers R SJ, Virtanen P, Cournapeau D, et al. Array programming with NumPy. Nature. 2020;585:357–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bradski G. The OpenCV library. Dr Dobbs J Softw Tools. 2000;120:122–5.

    Google Scholar 

  82. Brostow W, Drewniak M. Computer simulations of chain conformations in dilute polymer solutions under shear flow. J Chem Phys. 1996;105:7135–9.

    Article  CAS  Google Scholar 

  83. Jiménez J. Near-wall turbulence. Phys Fluids. 2013;25:101302.

    Article  Google Scholar 

Download references

Funding

We are grateful for support from the JST-Mirai Program (JPMJMI18A2) (K.T.). This research was partly supported by JSPS KAKENHI Grants-in-Aid for Scientific Research (B) (No. JP23H02014) (K.T.) and Scientific Research (C) (No. JP 23K04841) (Y.M.) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan, and the NEDO MOONSHOT Research and Development Program (No. JPNP18016) (H.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morimitsu, Y., Matsuno, H. & Tanaka, K. Morphologies of polymer chains spun onto solid substrates. Polym J (2024). https://doi.org/10.1038/s41428-024-00937-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-024-00937-2

Search

Quick links