Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Development of fluorescence sensors for quantifying anions based on polyhedral oligomeric silsesquioxane that contains flexible side chains with urea structures

Abstract

Since anions play a significant role in various biological phenomena, developing fluorescence anion sensors is important. Previously, we focused on polyhedral oligomeric silsesquioxane (POSS) as a three-dimensional (3D) scaffold to design an anion receptor. In this study, we evaluated the anion binding properties of an POSS derivative with eight urea groups and applied the derivative to an anion fluorescence sensor utilizing its 3D structure. 1H NMR measurements revealed that the POSS derivative with urea groups can bind to sulfate ions. Compared to the model compound, the POSS derivative exhibits a greater binding ability due to the cooperative effects of multiple urea groups. Through the introduction of naphthyl urea groups, the POSS derivative can be used as a fluorescence sensor for quantifying sulfate ions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Scheme 3
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gonçalves MST. Fluorescent labeling of biomolecules with organic probes. Chem Rev. 2009;109:190–212.

    Article  PubMed  Google Scholar 

  2. Thomas SW, Joly GD, Swager TM. Chemical sensors based on amplifying fluorescent conjugated polymers. Chem Rev. 2007;107:1339–86.

    Article  CAS  PubMed  Google Scholar 

  3. He L, Dong B, Liu Y, Lin W. Fluorescent chemosensors manipulated by dual/triple interplaying sensing mechanisms. Chem Soc Rev. 2016;45:6449–61.

    Article  CAS  PubMed  Google Scholar 

  4. Gale PA, Caltagirone C. Anion sensing by small molecules and molecular ensembles. Chem Soc Rev. 2015;44:4212–27.

    Article  CAS  PubMed  Google Scholar 

  5. Barth MC, Church AT. Regional and global distributions and lifetimes of sulfate aerosols from Mexico City and southeast China. J Geophys Res. 1999;104:30231–9.

    Article  CAS  Google Scholar 

  6. Rohde LH, Julian JA, Babaknia A, Carson DD. Cell surface expression of HIP, a novel heparin/heparan sulfate-binding protein, of human uterine epithelial cells and cell lines. J Biol Chem. 1996;271:11824–30.

    Article  CAS  PubMed  Google Scholar 

  7. Young RW. The role of the Golgi complex in sulfate metabolism. J Cell Biol. 1973;57:175–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Saini R, Kumar S. A fluorescent probe for the selective detection of sulfate ions in water. RSC Adv. 2013;3:21856–62.

    Article  CAS  Google Scholar 

  9. Bondy CR, Gale PA, Loeb SJ. Metal−organic anion receptors: arranging urea hydrogen-bond donors to encapsulate sulfate ions. J Am Chem Soc. 2004;126:5030–1.

    Article  CAS  PubMed  Google Scholar 

  10. Emami Khansari M, Mirchi A, Pramanik A, Johnson CR, Leszczynski J, Hossain MA. Remarkable hexafunctional anion receptor with operational urea-based inner cleft and thiourea-based outer cleft: Novel design with high-efficiency for sulfate binding. Sci Rep. 2017;7:6032.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tanaka K, Chujo Y. Chemicals-inspired biomaterials: developing biomaterials inspired by material science based on POSS. Bull Chem Soc Jpn. 2013;86:1231–9.

    Article  CAS  Google Scholar 

  12. Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–46.

    Article  CAS  Google Scholar 

  13. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  14. Gon M, Tanaka K, Chujo Y. Recent progress in the development of advanced element-block materials. Polym J. 2018;50:109–26.

    Article  CAS  Google Scholar 

  15. Gon M, Tanaka K, Chujo Y. Recent progress on designable hybrids with stimuli-responsive optical properties originating from molecular assembly concerning polyhedral oligomeric silsesquioxane. Chem Asian J. 2022;17:e202200144.

    Article  CAS  PubMed  Google Scholar 

  16. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev. 2010;110:2081–173.

    Article  CAS  PubMed  Google Scholar 

  17. Du Y, Liu H. Cage-like silsesquioxanes-based hybrid materials. Dalton Trans. 2020;49:5396–405.

    Article  CAS  PubMed  Google Scholar 

  18. Kaneko Y. Ionic liquids containing silsesquioxane and cyclic siloxane frameworks. Chem Rec. 2023;23:e202200291.

    Article  CAS  PubMed  Google Scholar 

  19. Nagao M, Imoto H, Naka K. Tripod-shaped POSS compounds as single-component silsesquioxane hybrids. Polym J. 2024;56:31–42.

    Article  CAS  Google Scholar 

  20. Kajiya R, Wada H, Kuroda K, Shimojima A. Inorganic–organic hybrid photomechanical crystals of azobenzene-modified polyhedral oligomeric silsesquioxane (POSS). Chem Lett. 2020;49:327–9.

    Article  CAS  Google Scholar 

  21. Sakai H, Yung TM, Mure T, Kurono N, Fujii S, Nakamura Y, et al. Controlling circularly polarized luminescence using helically structured chiral silica as a nanosized fused quartz cell. JACS Au. 2023;3:2698–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Koizumi K, Takeda N, Unno M, Ouali A. Synthesis of octachloro- and octaazido-functionalized T8-cages and application to recyclable palladium catalyst. Inorg Chem. 2022;61:1495–503.

    Article  CAS  PubMed  Google Scholar 

  23. Lo MY, Zhen C, Lauters M, Jabbour GE, Sellinger A. Organic−inorganic hybrids based on pyrene functionalized octavinylsilsesquioxane cores for application in OLEDs. J Am Chem Soc. 2007;129:5808–9.

    Article  CAS  PubMed  Google Scholar 

  24. Furgal JC, Jung JH, Goodson TII, Laine RM. Analyzing structure–photophysical property relationships for isolated T8, T10, and T12 stilbenevinylsilsesquioxanes. J Am Chem Soc. 2013;135:12259–69.

    Article  CAS  PubMed  Google Scholar 

  25. Gon M, Sato K, Tanaka K, Chujo Y. Controllable intramolecular interaction of 3D arranged π-conjugated luminophores based on a POSS scaffold, leading to highly thermally-stable and emissive materials. RSC Adv. 2016;6:78652–60.

    Article  CAS  Google Scholar 

  26. Gon M, Sato K, Kato K, Tanaka K, Chujo Y. Preparation of bright-emissive hybrid materials based on light-harvesting POSS having radially integrated luminophores and commercial π-conjugated polymers. Mater Chem Front. 2019;3:314–20.

    Article  CAS  Google Scholar 

  27. Gon M, Saotome S, Tanaka K, Chujo Y. Paintable hybrids with thermally stable dual emission composed of tetraphenylethene-integrated POSS and MEH-PPV for heat-resistant white-light luminophores. ACS Appl Mater Interfaces. 2021;13:12483–90.

    Article  CAS  PubMed  Google Scholar 

  28. Iizuka D, Gon M, Tanaka K, Chujo Y. Acceleration of chemiluminescence reactions with coumarin-modified polyhedral oligomeric silsesquioxane. Bull Chem Soc Jpn. 2022;95:743–7.

    Article  CAS  Google Scholar 

  29. Naka K, Fujita M, Tanaka K, Chujo Y. Water-soluble anionic POSS-core dendrimer:  synthesis and copper(II) complexes in aqueous solution. Langmuir. 2007;23:9057–63.

    Article  CAS  PubMed  Google Scholar 

  30. Tanaka K, Inafuku K, Naka K, Chujo Y. Enhancement of entrapping ability of dendrimers by a cubic silsesquioxane core. Org Biomol Chem. 2008;6:3899–901.

    Article  CAS  PubMed  Google Scholar 

  31. Tanaka K, Inafuku K, Chujo Y. Environment-responsive upconversion based on dendrimer-supported efficient triplet–triplet annihilation in aqueous media. Chem Commun. 2010;46:4378–80.

    Article  CAS  Google Scholar 

  32. Tanaka K, Jeon JH, Inafuku K, Chujo Y. Enhancement of optical properties of dyes for bioprobes by freezing effect of molecular motion using POSS-core dendrimers. Bioorg Med Chem. 2012;20:915–9.

    Article  CAS  PubMed  Google Scholar 

  33. Tanaka K, Okada H, Ohashi W, Jeon JH, Inafuku K, Chujo Y. Hypoxic condition-selective upconversion via triplet–triplet annihilation based on POSS-core dendrimer complexes. Bioorg Med Chem 2013;21:2678–81.

    Article  CAS  PubMed  Google Scholar 

  34. Kaneshiro TL, Wang X, Lu ZR. Synthesis, characterization, and gene delivery of poly-l-lysine octa(3-aminopropyl)silsesquioxane dendrimers: nanoglobular drug carriers with precisely defined molecular architectures. Mol Pharmaceutics. 2007;4:759–68.

    Article  CAS  Google Scholar 

  35. Cai X, Jin R, Wang J, Yue D, Jiang Q, Wu Y, et al. Bioreducible fluorinated peptide dendrimers capable of circumventing various physiological barriers for highly efficient and safe gene delivery. ACS Appl Mater Interfaces. 2016;8:5821–32.

    Article  CAS  PubMed  Google Scholar 

  36. Xiang K, Li Y, Xu C, Li S. POSS-based organic–inorganic hybrid nanomaterials: aggregation-enhanced emission, and highly sensitive and selective detection of nitroaromatic explosives in aqueous media. J Mater Chem C. 2016;4:5578–83.

    Article  CAS  Google Scholar 

  37. Kakuta T, Tanaka K, Chujo Y. Synthesis of emissive water-soluble network polymers based on polyhedral oligomeric silsesquioxane and their application as optical sensors for discriminating the particle size. J Mater Chem C. 2015;3:12539–45.

    Article  CAS  Google Scholar 

  38. Narikiyo H, Kakuta T, Matsuyama H, Gon M, Tanaka K, Chujo Y. Development of the optical sensor for discriminating isomers of fatty acids based on emissive network polymers composed of polyhedral oligomeric silsesquioxane. Bioorg Med Chem. 2017;25:3431–6.

    Article  CAS  PubMed  Google Scholar 

  39. Tanaka K, Murakami M, Jeon JH, Chujo Y. Enhancement of affinity in molecular recognition via hydrogen bonds by POSS-core dendrimer and its application for selective complex formation between guanosine triphosphate and 1,8-naphthyridine derivatives. Org Biomol Chem. 2012;10:90–5.

    Article  CAS  PubMed  Google Scholar 

  40. Jeon JH, Kakuta T, Tanaka K, Chujo Y. Facile design of organic–inorganic hybrid gels for molecular recognition of nucleoside triphosphates. Bioorg Med Chem Lett. 2015;25:2050–5.

    Article  CAS  PubMed  Google Scholar 

  41. Narikiyo H, Gon M, Tanaka K, Chujo Y. Control of intramolecular excimer emission in luminophore-integrated ionic POSSs possessing flexible side-chains. Mater Chem Front. 2018;2:1449–55.

    Article  CAS  Google Scholar 

  42. Iizuka D, Gon M, Tanaka K, Chujo Y. Development of a fluoride-anion sensor based on aggregation of a dye-modified polyhedral oligomeric silsesquioxane. Chem Commun. 2022;58:12184–7.

    Article  CAS  Google Scholar 

  43. Kumar V. Urea/thiourea based optical sensors for toxic analytes: a convenient path for detection of first nerve agent (Tabun). Bull Chem Soc Jpn. 2021;94:309–26.

    Article  CAS  Google Scholar 

  44. Blažek Bregović V, Basarić N, Mlinarić-Majerski K. Anion binding with urea and thiourea derivatives. Coord Chem Rev. 2015;295:80–124.

    Article  Google Scholar 

  45. Amendola V, Fabbrizzi L, Mosca L. Anion recognition by hydrogen bonding: urea-based receptors. Chem Soc Rev. 2010;39:3889–915.

    Article  CAS  PubMed  Google Scholar 

  46. Koike M, Nishimura Y. Substitution position effects of an electron-withdrawing group on the tautomer fluorescence of Coumarin–urea derivatives with an acetate anion. Dyes Pigm. 2023;208:110811.

    Article  Google Scholar 

  47. Takahashi M, Ito N, Haruta N, Ninagawa H, Yazaki K, Sei Y, et al. Environment-sensitive emission of anionic hydrogen-bonded urea-derivative–acetate-ion complexes and their aggregation-induced emission enhancement. Commun Chem. 2021;4:168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takahashi M, Enami Y, Ninagawa H, Obata M. A novel approach to white-light emission using a single fluorescent urea derivative and fluoride. N. J Chem. 2019;43:3265–8.

    Article  CAS  Google Scholar 

  49. Tilly DP, Morris DTJ, Clayden J. Anion-dependent hydrogen-bond polarity switching in ethylene-bridged urea oligomers. Chem Eur J. 2023;29:e202302210.

    Article  CAS  PubMed  Google Scholar 

  50. Lee JY, Cho EJ, Mukamel S, Nam KC. Efficient fluoride-selective fluorescent host:  experiment and theory. J Org Chem. 2004;69:943–50.

    Article  CAS  PubMed  Google Scholar 

  51. Amendola V, Bergamaschi G, Boiocchi M, Fabbrizzi L, Mosca L. The interaction of fluoride with fluorogenic ureas: an ON1–OFF–ON2 response. J Am Chem Soc. 2013;135:6345–55.

    Article  CAS  PubMed  Google Scholar 

  52. Winnik FM. Photophysics of preassociated pyrenes in aqueous polymer solutions and in other organized media. Chem Rev. 1993;93:587–614.

    Article  CAS  Google Scholar 

  53. Kim SK, Bok JH, Bartsch RA, Lee JY, Kim JS. A fluoride-selective PCT chemosensor based on formation of a static pyrene excimer. Org Lett. 2005;7:4839–42.

    Article  CAS  PubMed  Google Scholar 

  54. Zapata F, Sabater P, Caballero A, Molina P. A case of oxoanion recognition based on combined cationic and neutral C–H hydrogen bond interactions. Org Biomol Chem. 2015;13:1339–46.

    Article  CAS  PubMed  Google Scholar 

  55. Aladekomo JB, Birks JB, Flowers BH. ‘Excimer’ fluorescence VII. Spectral studies of naphthalene and its derivatives. Proc Math Phys Eng Sci. 1964;284:551–65.

    Google Scholar 

  56. Lekha PK, Ghosh T, Prasad E. Utilizing dendritic scaffold for feasible formation of naphthalene excimer. J Chem Sci. 2011;123:919–26.

    Article  CAS  Google Scholar 

  57. Banerjee A, Sahana A, Guha S, Lohar S, Hauli I, Mukhopadhyay SK, et al. Nickel(II)-induced excimer formation of a naphthalene-based fluorescent probe for living cell imaging. Inorg Chem. 2012;51:5699–704.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the SEI Group CSR Foundation (for KT), JSPS KAKENHI Grant Numbers JP21H02001 and JP21K19002 (for KT) and JP17H01220 and JP P24102013 (YC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narikiyo, H., Gon, M., Tanaka, K. et al. Development of fluorescence sensors for quantifying anions based on polyhedral oligomeric silsesquioxane that contains flexible side chains with urea structures. Polym J 56, 661–666 (2024). https://doi.org/10.1038/s41428-024-00909-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-024-00909-6

Search

Quick links