Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reusable dismantlable adhesion interfaces induced by photodimerization and thermo/photocleavage reactions

Abstract

Controlling adhesion strength during and after the use of bonded materials is crucial. Dismantlable adhesives play important roles in material recycling. However, typical dismantlable adhesives rely on the bulk properties of the adhesive, and specific control of dismantling behavior is challenging. Here, we successfully demonstrated the reusability of a dismantlable adhesion interface system, in which a cleavable molecular layer forms at the adhesion interface through reversible dimerization and cleavage reactions of anthracene. The adhesion peel test was conducted repeatedly by forming a cleavable layer on the substrate surface of the specimens. Strong bonding in the initial state and easy dismantling after stimulation were achieved even in the reused layer. Our strategy for constructing a dismantlable adhesion interface holds promise in material recycling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gardner DJ. Theories and mechanisms of adhesion. In Pizzi A, Mittal KL, editors, Handbook of adhesive technology, 3rd ed., FL, USA: Taylor and Francis; 2018, pp. 3–18.

  2. Bandl C, Wolfgang K, Schlögl S. Adhesives for “debonding-on-demand”: Triggered release mechanisms and typical applications. Int J Adhes Adhes. 2020;99:102585.

    Article  CAS  Google Scholar 

  3. Sierra-Romero A, Novakovic K, Geoghegan M. Adhesive interfaces toward a zero-waste industry. Langmuir. 2022;38:15476–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heinzmann C, Weder C, de Espinosa LM. Supramolecular polymer adhesives: advanced materials inspired by nature. Chem Soc Rev. 2016;45:342–58.

    Article  CAS  PubMed  Google Scholar 

  5. Blelloch ND, Yarbrough HJ, Mirica KA. Stimuli-responsive temporary adhesives: enabling debonding on demand through strategic molecular design. Chem Sci. 2021;12:15183–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Mulcahy KR, Kilpatrick AFR, Harper GDJ, Walton A, Abbott AP. Debondable adhesives and their use in recycling. Green Chem. 2022;24:36–61.

    Article  CAS  Google Scholar 

  7. Nishiyama Y, Uto N, Sato C, Sakurai H. Dismantlement behavior and strength of dismantlable adhesive including thermally expansive particles. Int J Adhes Adhes. 2003;23:377–82.

    Article  CAS  Google Scholar 

  8. Sato E, Hagihara T, Matsumoto A. Facile synthesis of main-chain degradable block copolymers for performance enhanced dismantlable adhesion. ACS Appl Mater Interfaces. 2012;4:2057–64.

    Article  CAS  PubMed  Google Scholar 

  9. Iseki M, Suzuki Y, Tachi H, Matsumoto A. Design of a high-performance dismantlable adhesion system using pressure-sensitive adhesive copolymers of 2‐hydroxyethyl acrylate protected with tert-butoxycarbonyl group in the presence of cross-linker and Lewis acid. ACS Omega. 2018;3:16357–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Akiyama H, Okuyama Y, Fukata T, Kihara H. Reversible photocuring of liquid hexa-anthracene compounds for adhesive applications. J Adhes. 2018;94:799–813.

    Article  CAS  Google Scholar 

  11. Saito S, Nobusue S, Tsuzaka E, Yuan C, Mori C, Hara M, et al. Light-melt adhesive based on dynamic carbon frameworks in a columnar liquid-crystal phase. Nat Commun. 2016;7:12094.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kondo M, Uematsu T, Ootsuki N, Okai D, Adachi H, Kawatsuki N. Photoinduced phase transition of N-benzylideneaniline liquid crystalline polymer and applications of photodismantlable adhesives. React Funct Polym. 2022;174:105247.

    Article  CAS  Google Scholar 

  13. Akiyama H, Kanazawa S, Okuyama Y, Yoshida M, Kihara H, Nagai H, et al. Photochemically reversible liquefaction and solidification of multiazobenzene sugar-alcohol derivatives and application to reworkable adhesives. ACS Appl Mater Interfaces. 2014;6:7933–41.

    Article  CAS  PubMed  Google Scholar 

  14. Ito S, Akiyama H, Sekizawa R, Mori M, Yoshida M, Kihara H. Light-induced reworkable adhesives based on ABA-type triblock copolymers with azopolymer termini. ACS Appl Mater Interfaces. 2018;10:32649–58.

    Article  CAS  PubMed  Google Scholar 

  15. Xu WC, Sun S, Wu S. Photoinduced reversible solid-to-liquid transitions for photoswitchable materials. Angew Chem Int Ed. 2019;58:9712–40.

    Article  CAS  Google Scholar 

  16. Imato K, Momota K, Kaneda N, Imae I, Ooyama Y. Photoswitchable adhesives of spiropyran polymers. Chem Mater 2022;34:8289–96.

    Article  CAS  Google Scholar 

  17. Inada M, Horii T, Fujie T, Nakanishi T, Asahi T, Saito K. Debonding-on-demand adhesives based on photo-reversible cycloaddition reactions. Mater Adv. 2023;4:1289–96.

    Article  CAS  Google Scholar 

  18. Shiote H, Sekiguchi Y, Ohe M, Sato C. Influence of adhesion area, applied voltage, and adherend materials on residual strength of joints bonded with electrically dismantlable adhesive. J Adhes. 2017;93:831–54.

    Article  CAS  Google Scholar 

  19. Salimi S, Babra TS, Dines GS, Baskerville SW, Hayes W, Greenland BW. Composite polyurethane adhesives that debond-on-demand by hysteresis heating in an oscillating magnetic field. Eur Polym J. 2019;121:109264.

    Article  Google Scholar 

  20. Kim N, Kang H, Lee JH, Kee S, Lee SH, Lee K. Highly conductive all-plastic electrodes fabricated using a novel chemically controlled transfer-printing method. Adv Mater. 2015;27:2317–23.

    Article  CAS  PubMed  Google Scholar 

  21. Babra TS, Wood M, Godleman JS, Salimi S, Warriner C, Basin N, et al. Fluoride-responsive debond on demand adhesives: manipulating polymer crystallinity and hydrogen bonding to optimise adhesion strength at low bonding temperatures. Eur Polym J. 2019;119:260–71.

    Article  CAS  Google Scholar 

  22. Ebnesajjad S. Surface treatment of materials for adhesive bonding. 2nd ed., MA, USA: Elsevier; 2014.

  23. Awaja F, Gilbert M, Kelly G, Fox B, Pigram PJ. Adhesion of polymers. Prog Polym Sci. 2009;34:948–68.

    Article  CAS  Google Scholar 

  24. Kawaguchi D, Nakayama R, Koga H, Totani M, Tanaka K. Improvement of polymer adhesion by designing the interface layer. Polymer. 2023;265:125581.

    Article  CAS  Google Scholar 

  25. Zhang Y, Hasegawa K, Kamo S, Takagi K, Takahara A. Surface modification for enhanced lap shear strength of the epoxy-bonded joints consisting of metallic adherents and similar/ dissimilar materials. ACS Appl Polym Mater. 2023;5:5381–9.

    Article  CAS  Google Scholar 

  26. Yuk H, Zhang T, Lin S, Parada GA, Zhao X. Tough bonding of hydrogels to diverse non-porous surfaces. Nat Mater. 2016;15:190–6.

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Yang J, Bai R, Chen B, Suo Z. Hydrogel adhesion: a supramolecular synergy of chemistry, topology, and mechanics. Adv Funct Mater. 2020;30:1901693.

    Article  CAS  Google Scholar 

  28. Lee W, Heo E, Koo HB, Cho I, Chang JB. Strong, chemically stable, and enzymatically on-demand detachable hydrogel adhesion using protein crosslink. Macromol Rapid Commun. 2023;44:2200750.

    Article  CAS  Google Scholar 

  29. Aizawa M, Akiyama H, Matsuzawa Y. Fabrication of stimulus-responsive molecular layer comprising anthracene molecules. Colloids Surf A Physicochem Eng Asp. 2021;616:126301.

    Article  CAS  Google Scholar 

  30. Aizawa M, Akiyama H, Matsuzawa Y. Convenient preparation of stimulus-responsive molecular layers containing anthracene molecules to control surface properties. Colloids Surf A Physicochem Eng Asp. 2021;630:127547.

    Article  CAS  Google Scholar 

  31. Aizawa M, Akiyama H, Matsuzawa Y. Dismantlable adhesion interface featuring a thermo/photocleavable molecular layer. Adv Eng Mater. 2022;24:2100823.

    Article  CAS  Google Scholar 

  32. Aizawa M, Akiyama H, Yamamoto T, Matsuzawa Y. Photo-and heat-induced dismantlable adhesion interfaces prepared by layer-by-layer deposition. Langmuir. 2023;39:2771–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bouas-Laurent H, Castellan A, Desvergne JP, Lapouyade R. Photodimerization of anthracenes in fluid solutions: (part 2) mechanistic aspects of the photocycloaddition and of the photochemical and thermal cleavage. Chem Soc Rev. 2001;30:248–63.

    Article  CAS  Google Scholar 

  34. Frank PG, Tuten BT, Prasher A, Chao D, Berda EB. Intra-chain photodimerization of pendant anthracene units as an efficient route to single-chain nanoparticle fabrication. Macromol Rapid Commun. 2014;35:249–53.

    Article  CAS  PubMed  Google Scholar 

  35. Van Damme J, Vlaminck L, Van Assche G, Van Mele B, van den Berg O, Du Prez F. Synthesis and evaluation of 9-substituted anthracenes with potential in reversible polymer systems. Tetrahedron. 2016;72:4303–11.

    Article  Google Scholar 

  36. Lekha PK, Prasad E. Aggregation-controlled excimer emission from anthracene-containing polyamidoamine dendrimers. Chem Eur J. 2010;16:3699–706.

    Article  CAS  PubMed  Google Scholar 

  37. Jintoku H, Kao MT, Guerzo AD, Yoshigashima Y, Masunaga T, Takafuji M, et al. Tunable stokes shift and circularly polarized luminescence by supramolecular gel. J Mater Chem C. 2015;3:5970–5.

    Article  CAS  Google Scholar 

  38. Chatterjee S, Gohil H, Raval I, Chatterjee S, Paital AR. An anthracene excimer fluorescence probe on mesoporous silica for dual functions of detection and adsorption of mercury (II) and copper (II) with biological in vivo applications. Small. 2019;15:1804749.

    Article  Google Scholar 

  39. Collet G, Lathion T, Besnard C, Pigust C, Petoud S. On-demand degradation of metal-organic framework based on photocleavable dianthracene-based ligand. J Am Chem Soc. 2018;140:10820–8.

    Article  CAS  PubMed  Google Scholar 

  40. ISO 472:2013. Plastics — Vocabulary. Geneva, Switzerland: ISO; 2013.

  41. Das A, Danao A, Banerjee S, Raj AM, Sharma G, Prabhakar R, et al. Dynamics of anthracene excimer formation within a water-soluble nanocavity at room temperature. J Am Chem Soc. 2021;143:2025–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI under grant number JP23K13808 and JST PRESTO under grant number JPMJPR21N1. This work was performed under the research programs “Dynamic Alliance for Open Innovation Bridging Human, Environment and Materials” and “Crossover Alliance to Create the Future with People, Intelligence and Materials” in the “Network Joint Research Center for Materials and Devices.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miho Aizawa or Yoko Matsuzawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aizawa, M., Akiyama, H., Matsuzawa, Y. et al. Reusable dismantlable adhesion interfaces induced by photodimerization and thermo/photocleavage reactions. Polym J 56, 401–408 (2024). https://doi.org/10.1038/s41428-023-00877-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00877-3

Search

Quick links