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Abstract
Photoinduced transitions between the solid, glass, and liquid states based on molecular photoswitches promise a wide variety
of applications. Photoswitchable adhesives are representative examples and are expected to contribute to material recycling
for a sustainable future in the era of composite materials due to strong bonding and on-demand photo-induced debonding
with minimal damage to the adherends. Only a few molecular photoswitches are known to undergo these transitions, but
recent progress, mainly with azobenzene, has been remarkable. Here, we review the photoinduced transitions of small
molecules and polymers over approximately a decade and systematically discuss the molecular designs, mechanisms,
applications, merits and demerits, and future challenges in each photoswitch and the whole field. We hope this review
provides useful information, inspiration, and ideas for the development of this field and the expansion of its applications.

Introduction

Transitions between solids (crystals and some elastomers
with crystalline or glassy regions), glasses (frozen liquids),
and flowing liquids at room temperature induced by pho-
toirradiation and resulting changes in the melting points
(Tms) and glass transition temperatures (Tgs) [1–4] have
attracted considerable attention in various fields and are
considered for applications such as photoswitchable adhe-
sives [5, 6], energy storage and release [7–13], photo-
lithography [14], actuators [15], healable materials, and gas
separations (Fig. 1a). Unlike conventional temperature
control to induce the transitions, isothermal photostimula-
tion is fascinating because of the high spatiotemporal
resolution, easy and precise regulation of the wavelength
and intensity, and no generation of chemical waste. In
particular, photoswitchable adhesives are expected to con-
tribute to material recycling for a sustainable future as

complex architectures composed of dissimilar materials are
being developed in diverse fields [16–20], because they
enable both robust bonding during use and on-demand
debonding after use with minimal damage to the adherends
due to the advantages of light. In addition to photoinduced
transitions, polarity changes [21–26] and bond formation
and dissociation [27–36] (and resulting liquid crystal–liquid
transitions [37]) have enabled the photocontrol of adhesion
[5]. The photoinduced transitions of small molecules and
polymers have been achieved with molecular photo-
switches, which are (thermo)reversibly isomerized between
at least two thermodynamically (meta)stable states with
photoirradiation [38–42]. Although a huge variety of
molecular photoswitches are known and widely used, to the
best of our knowledge, only five of them have been
demonstrated to show photoinduced transitions, and these
are azobenzene (AB), spiropyran (SP), hydrazone, diary-
lethene (DAE), and 1,2-diketone (Fig. 1b), since the first
paper using AB was reported in 2011 [43]. Moreover, the
previously published papers were predominantly on AB.
The progress realized primarily with AB small molecules
and polymers has been summarized in excellent reviews
[1–4]. In this article, we highlight recent progress in pho-
toinduced transitions based on AB and other photoswitches.
Transitory liquefaction induced by the photothermal effect
or continuous photoisomerization cycles and photoinduced
transitions of liquid crystals [44–54], between sols and gels,
and between liquids and elastomers without crystalline or
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glassy regions are beyond the scope of this review. Here,
previous studies on photoinduced transitions between
solids, glasses, and liquids are divided into eight sections
based on the kinds of photoswitches and molecular weights,
i.e., small molecules or polymers including monodisperse
oligomers and dendrimers, and discussed separately in
terms of the molecular designs, mechanisms, applications,

merits and demerits, and future challenges. Finally, we also
suggest future challenges for the whole field.

Azobenzene small molecules

The photoinduced transitions based on AB are described in
the other remarkable reviews [1–4]. Here, we will describe
and discuss only the essence of the previous studies. AB is
definitely the most commonly used molecular photoswitch
and is characterized by large motions generated during
isomerization between the thermodynamically stable E
isomer and the metastable Z isomer during irradiation with
UV and visible light (Fig. 1b) [55, 56]. Macrocyclic AB
molecules with long alkyl chains were discovered for the
first time to show photoinduced solid–liquid phase transi-
tions at room temperature (Fig. 2a) [43]. Both the dimer and
trimer macrocycles, in which all incorporated ABs were the
E isomers, were isothermally changed from the crystalline
to the isotropic phase by UV light (Fig. 2b, c). The trimer
changed more slowly than the dimer, and the corresponding
macrocycles without long alkyl chains did not undergo
these photoinduced transitions. The phase transitions were
highly sensitive to light and induced even by the generation
of a small Z fraction. One reason for the high sensitivity is
that E/Z mixtures generally have much lower Tms than the
pure E and Z isomers, as observed with the parent AB
[57, 58], which is significantly different from unidirectional
Tg changes in AB-containing polymers as a function of the
E/Z ratio. Subsequent work demonstrated that the macro-
cyclic E/E dimer isomerized to the E/Z isomer to the Z/Z
isomer under UV irradiation and underwent transitions from
crystalline to liquid to another crystalline phase, which were
reversibly induced with visible light exposure and heating
(Fig. 2d) [59]. The photoinduced liquefaction mechanism
was also elucidated by X-ray crystallography under UV
irradiation at different temperatures [60]. After the first
paper, photoinduced transitions from a crystal to a liquid
and between crystals, glasses, and liquids were reported for
an asymmetric ortho-alkylated AB [61] and sugar alcohol
derivatives with multiple ABs [62], respectively (Fig. 2e, f).
Although the asymmetric AB has not been studied subse-
quently, a systematic study on a series of multi-AB sugar
alcohol derivatives was conducted and found that those with
one or two ABs did not isomerize and liquefy upon UV
irradiation, probably due to the high crystallinity and
absence of available free volume for isomerization [63–65].
On the other hand, the syntheses and isolation of these AB
derivatives were relatively difficult. Therefore, since then,
most of the molecular structures have been simple but
asymmetric and composed of one AB and one or more long
alkyl chains. A typical example is shown in Fig. 2g [66–70].
Two alkyl chains were added at the (para) 4- and 4’-
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and liquid states. b Photoswitches previously reported to show pho-
toinduced transitions
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positions of AB, and one methyl group was introduced at
the (meta) 3-position. Generally, long alkyl chains prompt
easy E-AB aggregation and make Z-AB a liquid due to the

large free volume [65]. The methyl group broke the mole-
cular symmetry, disrupted crystal packing, destabilized the
crystal structures, provided enough free volume for
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photoisomerization, and enabled photoinduced
crystal–liquid transitions. The corresponding symmetric AB
derivatives without the methyl group or with two methyl
groups at the 3- and 3’-positions underwent no photo-
induced transitions. In addition to these AB small mole-
cules, a wide variety of ABs have shown photoinduced
crystal–liquid transitions, including an amphiphile [71],
ionic crystals and liquids [72–74], star-shaped tetramers
[75, 76], simple ABs with one or two small substituents
such as methyl and methoxy groups [77–83], and others
[84–87].

The simple AB skeleton was employed in all molecules
described above but has two fatal drawbacks for some
applications, i.e., UV excitation is required for E-to-Z iso-
merization, and the Z isomer has a short half-life (t1/2) of
approximately 1 day [55, 56]. UV light causes damage to
organic and polymeric materials and biological compo-
nents, although the high spatiotemporal resolution of the
light can minimize the effect. The Z isomer formed
the liquid state with high molecular mobility and therefore
could not maintain the state due to the short t1/2 in
the photoinduced transitions described above. To broaden
the application range, the excitation wavelength has been
redshifted to the visible and near infrared (NIR) regions
mainly by ortho-substitution, coordination, and bridging of
the two phenyl rings (Fig. 2h) [88–103], and the thermal
stability of the Z isomer has been improved to provide t1/2
values of up to several decades (at 25 °C in solution)
for ortho-substituted ABs and azoheteroarenes (Fig. 2i)
[104–112]. Recently, some of them have been demonstrated
to show crystal–liquid transitions with only visible light
[113, 114] and by photoisomerization with a thermally
stable Z isomer [106, 115–122]. Photoinduced transitions
between liquid E-AB and solid (crystalline) Z-AB would
suppress thermal isomerization by restricting the molecular
mobility of the Z isomer as approached in polymers
(Fig. 3c), but this has not been reported. The Z isomer of the
parent AB has a higher Tm (ca. 71 °C) than the E isomer (ca.
68 °C) [3, 4, 123], but modification of the AB skeleton
reverses the original Tms. The reason is still unknown [3].

To date, photoinduced transitions of AB small molecules
have been used for switching fluorescence [61] and enzymatic
degradation of a biodegradable polymer [68], switchable
adhesives [62–65, 67, 115, 120, 122], photoresists for simple
photolithography without harsh conditions [66, 74, 119], a
remote-controllable light shutter [71], energy storage and
release [72, 74, 76, 80, 82–84, 86, 87, 113, 114, 116–118, 121],
gas separation [75], moving crystals on glass and water sur-
faces [77–79, 81], an actuator [69], and shape memory [70].
A representative example of photoswitchable adhesives is
shown in Fig. 2j. An azoheteroarene with a t1/2 of several
days and almost quantitative photoisomerization yields in
both E–Z directions was used as the adhesive and showed
reversible bonding via solidification and debonding via
liquefaction induced by visible and UV irradiation, respec-
tively. Photoisomerization was clearly confirmed by the
color changes. Nevertheless, incorporation of the system in
polymers is desired because commercial adhesives are
mainly composed of polymers. In energy storage and
release, blending small ABs with photoinactive phase-
change materials [124–130] or solely unliquefiable ABs
[131] is a powerful strategy.

Azobenzene polymers

Photoinduced transitions between solid, glass, and liquid
states of polymers were independently reported for the first
time in 2017 by two research groups [132, 133]. Both
pioneering studies demonstrated that glassy linear poly-
acrylates with E-AB in the side chains were converted to
flowing liquids with Tgs below room temperature upon UV
irradiation and the consequent E-to-Z isomerization and
returned to glasses by visible irradiation and Z-to-E iso-
merization (Fig. 3a, b). The Tgs monotonically decreased
with increasing Z ratios [132], which was completely dif-
ferent from the dependence of Tms on the E/Z ratios in AB
small molecules. The effect of molecular weight on pho-
toliquefaction was also investigated [132, 134]. Interest-
ingly, all polyacrylate linear homopolymers of AB (R1=H,
m= 6, R2=CH3 in Fig. 3a) with different molecular
weights ranging from 5 × 103g mol−1 to 105 g mol−1 were
photoliquefied. The changes in Tgs between the original E
polymer and a photostationary state (PSS) in the E-to-Z
isomerization (ΔTg) were similar. Rather, the ΔTg in the
105 g mol−1 polymer (ca. 70 °C) was larger than that with a
molecular weight of 104 g mol−1 (ca. 60 °C), although the
higher molecular weight resulted in increased Tgs for both
isomers (E: from 48 °C to 80 °C, Z: from −10 °C to 7 °C).
A high molecular weight also generated bulk physical
properties such as free-standing and stretchable capabilities.
Regarding the polymer structure, the length of the alkyl
chain spacer, by which AB was connected to the main

Fig. 2 a Macrocyclic AB molecules reported in the first paper. Pho-
toinduced transition from b crystal to c liquid states of macrocyclic AB
(n= 1) and d the details. Reproduced with permission from Norikane
et al. [43]. Copyright 2011, the Royal Society of Chemistry. e An
asymmetric ortho-alkylated AB, f sugar alcohol derivatives with
multiple ABs, and g a typical example of simple asymmetric ABs that
show photoinduced transitions between crystal, glass, and liquid states.
Reproduced with permission from Akiyama and Yoshida [62].
Copyright 2012, John Wiley & Sons. h Visible and NIR light-
responsive ortho-substituted, coordinated, and bridged ABs.
i Representative thermally stable azoheteroarenes. j A photoswitchable
azoheteroarene adhesive. Reproduced with permission from Huang
et al. [120]. Copyright 2022, American Chemical Society
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chain, should not be too short or too long [135]. Short and
long spacers failed to induce phototransitions due to the
restricted molecular mobility of AB and the crystalline
natures of long alkyl chains such as n-C20H40, respectively.
Similarly, the length of the alkyl chain at the side chain end
significantly affected the photoinduced transitions [136].
Longer tails up to n-C16H33 resulted in higher Tgs for both
isomers but larger ΔTg and lower viscosity for the Z iso-
mers. Moreover, polyacrylate was more appropriate than
polymethacrylate as the main chain backbone for photo-
induced glass–flowing liquid transitions due to its higher
flexibility [137, 138]. In addition to the side chains of these
poly(meth)acrylate linear homopolymers [122, 132–147],
AB has been incorporated into a variety of polymers and
positions to enable photoinduced transitions between solids,
glasses, and liquids, including side chains of other linear
homopolymers (poly(vinyl ether) and polynorbornene)
[148, 149], linear statistical copolymers [150, 151], and
linear and star block copolymers [152–155], main chains of
linear polymers [156–160], both chain ends of linear oli-
gomers [161, 162], one end of a linear polymer [163], cross-
linked polymers [164, 165], and the peripheries of den-
drimers [166].

Photoinduced transitions were also demonstrated for
azoheteroarenes [122, 141], with only visible light [157], and

for crystalline polymers [140, 147, 148, 155–158, 161–163].
Furthermore, photoinduced transitions between a stable
liquid E isomer and a physically cross-linked solid-like
metastable Z isomer were achieved by fusing AB with a
quadruple hydrogen-bonding ureidopyrimidinone moiety
and incorporating it into the side chains of liquid poly-
siloxanes (Fig. 3c) [151]. The reverse direction to the com-
mon transitions using AB could solve the thermal
isomerization and back transition occurring at room tem-
perature by restricting the molecular mobility of the Z isomer,
which has never been addressed in AB small molecules and
promises to broaden the applications. Meanwhile, the
intrinsic instability of Z-AB was not improved (t1/2 = ca. 8 h
at 25 °C in solution), and this system may be excluded from
the scope of this review because the Tms and Tgs were not
determined.

The number of papers on photoinduced transitions of AB-
containing polymers is still small compared to that of low-
molecular-weight ABs. In particular, the use of upgraded ABs
[88–103] and azoheteroarenes [104–112] is rare but needed. In
terms of practical use, blending AB small molecules into
photoinactive polymers is an effective strategy to realize
photoinduced transitions of the polymeric materials
[167–172]. To date, photoinduced transitions of polymers
have been considered for applications including healable
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materials (Fig. 3d) [132, 134–136, 138, 160, 163, 166, 170],
switchable adhesives [122, 133, 137, 139, 148, 150–154,
159–161, 166, 168, 169], actuators [134, 157, 158, 164, 165],
switching thermal conductivity [140, 147] and fluorescence
[172], fabrication of micro- and nanopatterns (lithography)
[142, 144, 149, 155, 160], information encryption and smart
windows [163], shape memory [165], and energy storage and
release [166].

Spiropyran small molecule

Noncharged SP isomerizes to the metastable zwitterionic
merocyanine (MC) under UV irradiation and spontaneously
reverts back to SP at room temperature and more rapidly with
heating or visible irradiation (Fig. 1) [173, 174]. The large
polarity changes are intriguing and have been utilized in
various applications [21, 22, 24–26, 175]. To date, only one
SP small molecule has been reported to show photoinduced
solid–liquid transitions [176]. An SP derivative with two long
alkyl chains was a liquid but changed to a solid upon UV
light exposure and subsequent thermal treatment (Fig. 4a, b).
The J-aggregate of MC and blue crystals were formed by
heating at 30 °C, while the H-aggregate and red crystals
were generated by heating at 35–55 °C. Heating above the
estimated Tms of the crystals (> 60 °C) or visible light
exposure resulted in liquefaction and color fading. In contrast
to the photoinduced transitions based on AB, the thermally
unstable MC isomer formed a solid. Therefore, both crystals
were stable, and no thermal isomerization to SP was observed
in the dark at room temperature.

Spiropyran polymers

Switching of Tgs by SP–MC photoisomerization has been
achieved with linear polymers and a cross-linked polymer
[177, 178], although photoinduced transitions between
glasses and flowing liquids have not been demonstrated at
room temperature. The Tgs of the linear statistical copoly-
mers of an SP methacrylate and di(ethylene glycol)methyl
ether methacrylate with different compositions were
increased by up to ca. 20 °C upon UV irradiation, probably
due to the high polarity of the generated MC isomer and
consequent enhanced intermolecular interactions (Fig. 4c)
[178]. The direction of the Tg changes was opposite to that
of AB polymers and similar to the Tm changes in the SP
small molecule. However, unlike the small SP, the MC form
in the bulk reverted back to the SP form at room tempera-
ture over a period of 2–3 h. In the cross-linked polymer, the
Tg increase seen during UV light exposure was ca. 10 °C
and smaller than those of the linear polymers, but some
fraction of the MC form was maintained for several months

in the dark [177]. Photoinduced glass–liquid transitions at
room temperature will be possible by optimization of the
compositions in both systems.

Hydrazone small molecules

Recently, hydrazone photoswitches with extremely high
thermal stabilities have been developed [179–184]. The t1/2s
of the relatively unstable E or Z isomers, which changed
depending on the chemical structure, were up to ten thou-
sand years at 25 °C in solution and in the bulk [185],
although the thermal isomerization strongly depended on
the polarity of the media. Photoinduced crystal–isotropic
transitions of a hydrazone small molecule were discovered
in 2018 [186]. The crystalline Z isomer of a hydrazone
derivative with a dimethyl amino group changed to iso-
tropic with fluorescence quenching upon blue light irra-
diation because the E isomer was noncrystalline and
nonfluorescent (Fig. 4d, e). The crystal and fluorescence
were partially restored by UV exposure. Similarly, photo-
induced crystal–liquid transitions were observed in macro-
cyclic hydrazones (X= C8 and C9 in Fig. 4f) and used for
energy storage and release [185]. Although such transitions
did not occur at room temperature, photoinduced Tm
changes (ΔTm < 60 °C) were possible with other acyclic and
cyclic hydrazone molecules (Fig. 4f, g) [185, 187]. Inter-
estingly, the E isomers of the macrocycles with short alkyl
linkers (X=C6O1 and C7) had higher Tms than the cor-
responding Z isomers, which indicates that the opposite
direction, i.e., transitions between liquid Z isomers and solid
E isomers, will be also possible in hydrazone small mole-
cules by optimizing the modification.

Hydrazone polymers

Linear poly(meth)acrylate homopolymers of hydrazone
changed their Tgs upon light irradiation (Fig. 4h) [188].
Purple light irradiation of the stable Z isomers produced the
metastable E isomers and increased the Tgs by up to 22 °C.
The effects of the side chain spacer (m) and tail (n) lengths,
substitution position (ortho, meta, or para), and main chain
backbone (acrylate or methacrylate) were investigated.
Finally, the Tgs of both isomers were tuned to around room
temperature (20–37 °C) with ΔTg of 15 or 16 °C (para,
R=H, m= 2, n= 9 or 11).

Diarylethene small molecule

Isomerization between the thermally stable open and closed
forms of DAE proceeds via UV and visible irradiation, and
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the conjugation changes have attracted considerable interest
(Fig. 1) [189, 190]. Although the small structural changes
are considered unsuitable, photoinduced crystal-to-liquid

transitions were found for a DAE derivative (Fig. 4i) [191].
The open-ring and closed-ring isomers were crystalline at
room temperature with Tms of ca. 100 °C and ca. 140 °C,
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respectively, while the Tm of their mixture decreased to
approximately 30 °C. UV light exposure of the open-ring
crystals generated the closed-ring isomer and caused
liquefaction of the surface due to the lowered Tm of the
mixture. Microfibrils of the closed-ring isomer formed on
the surface over 24 h in the dark and disappeared during
visible light irradiation.

1,2-Diketone small molecule

An asymmetric heteroaromatic 1,2-diketone consisting of
thiophene and furan rings exhibited room-temperature
phosphorescence (RTP) in the crystalline and supercooled
liquid states (Fig. 4j) [192]. The diketone mainly exists in
the stable skew and metastable planar conformations. While
the skew conformer forms the crystals and produces feeble
green RTP, the planar conformer is more stable in the
excited state and yields strong yellow RTP in the liquid
state. Very recently, the diketone was reported to show a
photoinduced crystal-to-liquid transition at room tempera-
ture with RTP changes [193]. UV irradiation macro-
scopically melted the crystals into a liquid after
disappearance of the initial green RTP and emergence of the
yellow RTP (Fig. 4j). The mechanism was elucidated with
real-time monitoring of the RTP changes, single crystal
X-ray structural analyzes at different temperatures and after
UV light irradiation, and density functional theory calcu-
lations with comparisons to the corresponding symmetric
heteroaromatic 1,2-diketones [194–196]. A symmetric
diketone composed of two furan rings also changed from
crystals to a liquid without luminescence upon UV expo-
sure. Although recrystallization from the liquid asymmetric
diketone was extremely slow and required several months
[192], spontaneous and quick liquid-to-crystal transitions
after photoinduced melting and on-demand liquid-to-crystal
transitions caused by an external stimulus will be possible
after modification of the chemical structure based on the
elucidated mechanism. Additionally, photoinduced transi-
tions of polymers with diketones will be fascinating [197].

Conclusion

In this article, we reviewed the recent progress made with
photoinduced transitions of small molecules and polymers
between the solid, glass, and liquid states based on
molecular photoswitches. Only a few photoswitches were
found to undergo photoinduced transitions, and those
based on AB have been intensively studied for approxi-
mately a decade. Therefore, the mechanisms and structural
requirements for the transitions are poorly understood.
Additionally, AB is unsuitable for some applications due
to the thermal instability and high polarity of the Z isomer.
Photoinduced transitions should be studied with a wide
variety of photoswitches. In particular, thermally stable
photoswitches such as hydrazone [179–188], DAE
[189–191], hemiindigo (HI) [198], hemithioindigo (HTI)
[198, 199], stiff stilbene (SS) [200], and sterically hin-
dered SS (HSS) [201, 202] (Fig. 5) and visible and NIR
light-responsive switches [203, 204] are promising. HI
and HTI combine both thermal stability and two-way
isomerization induced by visible light. SS and HSS have
already been reported to show largely different Tms in the
E and Z isomers [203]. We believe that future studies on
these photoinduced transitions will completely elucidate
the mechanisms, establish design guidelines, broaden the
use, and accelerate practical applications.
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