Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Enhancing the transparency and tensile properties of immiscible poly(methyl methacrylate)/ethylene-vinyl alcohol copolymer blends by lithium salt addition

Subjects

Abstract

To improve the transparency and tensile properties of immiscible poly(methyl methacrylate) (PMMA) and ethylene-vinyl alcohol copolymer (EVOH) blended films, lithium (trifluoromethane sulfonyl) imide (LiTFSI) was added in small amounts. The addition of LiTFSI improved the transparencies of the PMMA/EVOH blends. However, scanning electron microscopy (SEM) images revealed that the blends with LiTFSI still maintained a sea-island morphology of the PMMA and EVOH phases with strong interfacial adhesion. A comparison of the SEM and energy-dispersive X-ray spectroscopy (EDS) images revealed the localization of LiTFSI in the EVOH domains. By comparing the refractive index data for the EVOH/LiTFSI blends, we established that the refractive indexes of the EVOH phases at LiTFSI concentrations of 20 or 30 wt% matched that of pure PMMA, which accounted for the improvement in transparency. The localization of LiTFSI interrupted the intra- and intermolecular hydrogen bonds of the OH groups in EVOH, resulting in a decrease in crystallinity. Consequently, the amorphous and flexible EVOH domains dispersed in the PMMA matrix prevented stress concentration during tensile deformation, improving the tensile properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bubmann T, Seidel A, Ruckdäschel H, Altstädt V. Transparent PC/PMMA blends with enhanced mechanical properties via reactive compounding of functionalized polymers. Polymers. 2021;14:73.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Sinha Ray S, Bousmina M, Maazouz A. Morphology and properties of organoclay modified polycarbonate/poly(methyl methacrylate) blend. Polym Eng Sci. 2006:1121–9.

  3. Xi S, Huang Y, Yang Q, Li G. Compatibilization of PMMA/PC blends with different strategies: transesterification catalyst versus nanoparticles. Ind Eng Chem Res. 2014;53:5916–24.

    Article  CAS  Google Scholar 

  4. Ishigami A, Watanabe K, Kurose T, Ito H. Physical and morphological properties of tough and transparent PMMA-based blends modified with polyrotaxane. Polymers. 2020;12:1790–802.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li Y, Shimizu H. Compatibilization by homopolymer: significant improvements in the modulus and tensile strength of PPC/PMMA blends by the addition of a small amount of PVAc. ACS Appl Mater Interfaces. 2009;1:1650–5.

    Article  CAS  PubMed  Google Scholar 

  6. Laatsch J, Kim GM, Michler GH, Arndt T, Süfke T. Investigation of the micromechanical deformation behavior of transparent toughened poly(methylmethacrylate) modified with core-shell particles. Polym Adv Technol. 1998;9:716–20.

    Article  CAS  Google Scholar 

  7. Giménez E, Lagarón JM, Maspoch ML, Cabedo L, Saura JJ. Uniaxial tensile behavior and thermoforming characteristics of high barrier EVOH-based blends of interest in food packaging. Polym Eng Sci. 2004;44:598–608.

    Article  Google Scholar 

  8. Soni R, Hsu YI, Asoh TA, Uyama H. Cellulose nanofiber reinforced starch film with rapid disintegration in marine environments. J Appl Polym Sci. 2022;139:e52776.

    Article  CAS  Google Scholar 

  9. Lessard JJ, Garcia LF, Easterling CP, Sims MB, Bentz KC, Arencibia S, et al. Catalyst-free vitrimers from vinyl polymers. Macromolecules. 2019;52:2105–11.

    Article  ADS  CAS  Google Scholar 

  10. Ito A, Phulkerd P, Ayerdurai V, Soga M, Courtoux A, Miyagawa A, et al. Enhancement of the glass transition temperature of poly(methyl methacrylate) by salt. Polym J. 2018;50:857–63.

    Article  CAS  Google Scholar 

  11. Miyagawa A, Ayerdurai V, Nobukawa S, Yamaguchi M. Viscoelastic properties of poly(methyl methacrylate) with high glass transition temperature by lithium salt addition. J Polym Sci B Polym Phys. 2016;54:2388–94.

    Article  ADS  CAS  Google Scholar 

  12. de Lima JA, Felisberti MI. Poly(ethylene-co-vinyl alcohol) and poly(methyl methacrylate) blends: phase behavior and morphology. Eur Polym J. 2008;44:1140–8.

    Article  Google Scholar 

  13. de Lima JA, Felisberti MI. Porous polymer structures obtained via the TIPS process from EVOH/PMMA/DMF solutions. J Membr Sci. 2009;344:237–43.

    Article  Google Scholar 

  14. Freymond C, Guinault A, Gervais M, Pluta M, Makowski T, Piorkowska E, et al. Crystallization behavior and morphological features of ethylene-vinyl alcohol 44 copolymer. Express Polym Lett. 2022;16:338–53.

    Article  CAS  Google Scholar 

  15. Tsugawa N, Ito A, Yamaguchi M. Effect of lithium salt addition on the structure and optical properties of PMMA/PVB blends. Polymer. 2018;146:242–8.

    Article  CAS  Google Scholar 

  16. Olmedo-Martínez JL, Meabe L, Basterretxea A, Mecerreyes D, Müller AJ. Effect of chemical structure and salt concentration on the crystallization and ionic conductivity of aliphatic polyethers. Polymers. 2019;11:452–64.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Olmedo-Martínez JL, Pastorio M, Gabirondo E, Lorenzetti A, Sardon H, Mecerreyes D, et al. Polyether single and double crystalline blends and the effect of lithium salt on their crystallinity and ionic conductivity. Polymers. 2021;13:2097–110.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Yamamoto T, Kanda T, Ooshima T, Saito Y. Correlation study among oxygen permeability, molecular mobility, and amorphous structure change of poly(ethylene-vinylalcohol copolymers) by moisture. J Appl Polym Sci. 2009;47:1181–91.

    Article  CAS  Google Scholar 

  19. Sun B, Mindemark J, Morozov EV, Costa LT, Bergman M, Johansson P, et al. Ion transport in polycarbonate based solid polymer electrolytes: experimental and computational investigations. Phys Chem Chem Phys. 2016;18:9504–13.

    Article  CAS  PubMed  Google Scholar 

  20. Lee JY, Jang J. IR study on the character of hydrogen bonding in novel liquid crystalline epoxy resin. Polym Bull. 1997;38:447–54.

    Article  CAS  Google Scholar 

  21. Venugopal G, Krause S, Wnek GE. Phase behaviour of poly(ethylene oxide)/poly(methyl methacrylate) blends containing alkali metal salts. Polymer. 1993;34:3241–6.

    Article  CAS  Google Scholar 

  22. Coates J. Interpretation of infrared spectra, a practical approach. In: Meyers RA, Editor-in-Chief. Encyclopedia of analytical chemistry. 2006. p. 1–23.

  23. Zhang Z, Britt IJ, Tung MA. Water absorption in EVOH films and its influence on glass transition temperature. J Polym Sci B Polym Physiol. 1999;37:691–9.

    Article  ADS  CAS  Google Scholar 

  24. Vannini M, Marchese P, Celli A, Lorenzetti C. Strategy to modify the crystallization behavior of EVOH32 through interactions with low-molecular-weight molecules. Ind Eng Chem Res. 2016;55:3517–24.

    Article  CAS  Google Scholar 

  25. Hughes LJ, Britt GE. Compatibility studies on polyacrylate and polymethacrylate systems. J Appl Polym Sci. 1961;5:337–48.

    Article  CAS  Google Scholar 

  26. Song JY, Kim JW, Suh KD. Poly(methyl methacrylate) toughening with refractive index-controlled core-shell composite particles. J Appl Polym Sci. 1999;71:1607–14.

    Article  CAS  Google Scholar 

  27. Park JG, Kim JY, Suh KD. Preparation of toughened PMMA through PEG-modified urethane acrylate/PMMA core-shell composite particles. J Appl Polym Sci. 1998;69:2291–302.

    Article  CAS  Google Scholar 

  28. Takahashi S, Okada H, Nobukawa S, Yamaguchi M. Optical properties of polymer blends composed of poly(methyl methacrylate) and ethylene-vinyl acetate copolymer. Eur Polym J. 2012;48:974–80.

    Article  CAS  Google Scholar 

  29. Boldrini B, Ostertag E, Rebner K, Oelkrug D. Exploring the hidden depth by confocal Raman experiments with variable objective aperture and magnification. Anal Bioanal Chem. 2021;413:7093–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Franke H, Festl HG, Kratzig E. Light induced refractive index changes in PMMA films doped with styrene. Polym Sci. 1984;262:213–6.

    CAS  Google Scholar 

  31. Bodurov I, Yovcheva T, Sainov S. PMMA films refractive index modulation via TiO2 nanoparticle inclusions and corona poling. Colloid Polym Sci. 2014;292:3045–8.

    Article  CAS  Google Scholar 

  32. Seki S, Tsuzuki S, Hayamizu K, Umebayashi Y, Serizawa N, Takei K, et al. Comprehensive refractive index property for room-temperature ionic liquids. J Chem Eng Data. 2012;57:2211–6.

    Article  CAS  Google Scholar 

  33. Shimizu K, Tariq M, Costa Gomes MF, Rebelo LP, Canongia Lopes JN. Assessing the dispersive and electrostatic components of the cohesive energy of ionic liquids using molecular dynamics simulations and molar refraction data. J Phys Chem B. 2010;114:5831–4.

    Article  CAS  PubMed  Google Scholar 

  34. Sun ST, Wang H, Huang D, Ding YL, Zhang Y, Song DP, et al. Refractive index engineering as a novel strategy toward highly transparent and tough sustainable polymer blends. Chin J Polym Sci. 2020;38:1335–44.

    Article  CAS  Google Scholar 

  35. Aly KA. On the study of the optical constants for different compositions of Snx(GeSe)100−x thin films in terms of the electronic polarizability, electronegativity and bulk modulus. Appl Phys A Mater Sci Process. 2015;120:293–9.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to appreciate Mitsubishi Chemical Corporation for providing EVOH samples and advising to the experimental data. We would like to also thank Ms. Atsuko Mori of Nagoya Institute of Technology, for SEM and EDS analyses. DMA measurement was supported by the Equipment Sharing Division, Organization for Co-Creation Research and Social Contributions, Nagoya Institute of Technology.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written with contributions from all authors. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Shogo Nobukawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Watanabe, H., Horada, M., Inomata, K. et al. Enhancing the transparency and tensile properties of immiscible poly(methyl methacrylate)/ethylene-vinyl alcohol copolymer blends by lithium salt addition. Polym J 56, 173–183 (2024). https://doi.org/10.1038/s41428-023-00866-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00866-6

Search

Quick links