Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

New strategy for lowering the energy levels of one frontier molecular orbital in conjugated molecules and polymers based on Aza-substitution at the isolated HOMO or LUMO

Abstract

A new method to control the electronic states of conjugated polymers without extending the π-conjugated system was developed. In the distribution of frontier molecular orbitals (FMOs), if one FMO was distributed on skeletal carbon, we defined each FMO as the isolated highest occupied molecular orbital (HOMO) or lowest unoccupied molecular orbital (LUMO). By replacing carbon with nitrogen (aza-substitution) at the isolated FMO, we found that the energy level of one FMO can be efficiently and selectively lowered. Based on this principle, we obtained blue and near-infrared emitting materials. Moreover, aggregation-induced emission (AIE) and/or crystallization-induced emission (CIE)-active complexes with longer wavelength emission were obtained through similar protocols. Furthermore, solid-state luminescent polymers were obtained. Various types of conjugated polymers with near-infrared (NIR) luminescent properties were also developed through selectively lowering the LUMO level by aza-substitution. In this review, we explain that aza-substitution in isolated FMOs is a new method for controlling the electronic state of conjugated polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shimizu M, Sakurai T. Organic fluorophores that emit ultraviolet light in the aggregated state. Aggregate. 2022;3:e144.

    Article  CAS  Google Scholar 

  2. He X, Xie H, Hu L, Liu P, Xu C, He W, et al. A versatile AIE fluorogen with selective reactivity to primaryamines for monitoring amination, protein labeling, andmitochondrial staining. Aggregate. 2023;4:e239.

    Article  CAS  Google Scholar 

  3. Ma R, Yu J, Liu T, Zhang G, Xiao Y, Luo Z, et al. All-polymer solar cells with over 16% efficiency and enhanced stability enabled by compatible solvent and polymer additives. Aggregate. 2022;3:e58.

    Article  CAS  Google Scholar 

  4. Li Y, Huang X, Sheriff HKM, Forrest SR. Semitransparent organic photovoltaics for building-integrated photovoltaic applications. Nat Rev Mater. 2023;8:186–201.

    Article  Google Scholar 

  5. Li Y, Huang X, Ding K, Sheriff HKM, Ye L, Liu H, et al. Non-fullerene acceptor organic photovoltaics with intrinsic operational lifetimes over 30 years. Nat Commun. 2021;12:5419.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Li Q, Guo Y, Liu Y. Exploration of near-infrared organic photodetectors. Chem Mater. 2019;31:6359–79.

    Article  CAS  Google Scholar 

  7. Kim JH, Liess A, Stolte M, Krause AM, Stepanenko V, Zhong C, et al. An efficient narrowband near-infrared at 1040 nm organic photodetector realized by intermolecular charge transfer mediated coupling based on a squaraine dye. Adv Mater. 2021;33:2100582.

    Article  CAS  Google Scholar 

  8. Huang J, Lee J, Vollbrecht J, Brus VV, Dixon AL, Cao DX, et al. A high-performance solution-processed organic photodetector for near-infrared sensing. Adv Mater. 2020;32:1906027.

    Article  CAS  Google Scholar 

  9. Huang Z, Carey JE, Liu M, Guo X, Mazur E, Campbell JC. Microstructured silicon photodetector. Appl Phys Lett. 2006;89:33506.

    Article  Google Scholar 

  10. Zhang S, Li Z, Li J, Wang B, Chen F, Li X, et al. Organic near-infrared photodetectors with photoconductivity-enhanced performance. Aggregate 2023;4:e345.

  11. Gon M, Ito S, Tanaka K, Chujo Y. Design strategies and recent results for near-infrared- emissive materials based on element-block π-conjugated polymers. Bull Chem Soc Jpn. 2021;94:2290–302.

    Article  CAS  Google Scholar 

  12. Tanaka K, Chujo Y. New idea for narrowing an energy gap by selective perturbation for one frontier molecular orbital. Chem Lett. 2021;50:269–79.

    Article  CAS  Google Scholar 

  13. Watanabe H, Hirose M, Tanaka K, Tanaka K, Chujo Y. Color tuning of alternating conjugated polymers composed of pentaazaphenalene by modulating their unique electronic structures involving isolated-LUMOs. Polym Chem. 2016;7:3674–80.

    Article  CAS  Google Scholar 

  14. Watanabe H, Ochi J, Tanaka K, Chujo Y. Tuning the NIR absorption properties of 1,3,4,6,9b-pentaazaphenalene derivatives through the spatially separated frontier molecular orbitals. Eur J Org Chem. 2020;2020:777–83.

    Article  CAS  Google Scholar 

  15. Richards GJ, Hill JP, Subbaiyan NK, D’Souza F, Karr PA, Elsegood MRJ, et al. Pyrazinacenes: Aza aanalogues of acenes. J Org Chem. 2009;74:8914–23.

    Article  PubMed  CAS  Google Scholar 

  16. Novakova V, Reimerova P, Svec J, Suchan D, Miletin M, Rhoda HM, et al. Systematic investigation of phthalocyanines, naphthalocyanines, and their aza-analogues. Effect of the isosteric aza-replacement in the core. Dalton Trans. 2015;44:13220–33.

    Article  PubMed  CAS  Google Scholar 

  17. Kritskaya AY, Berezin MB, Antina EV, Vyugin AI. Effect of aryl-, halogen-, and Ms-aza-substitution on the luminescent properties and photostability of difluoroborates of 2,2’-dipyrrometenes. J Fluoresc. 2019;29:911–20.

    Article  PubMed  CAS  Google Scholar 

  18. Yoshii R, Yamane H, Nagai A, Tanaka K, Taka H, Kita H, et al. π-Conjugated polymers composed of BODIPY or Aza-BODIPY derivatives exhibiting high electron mobility and low threshold voltage in electron-only devices. Macromolecules 2014;47:2316–23.

    Article  CAS  Google Scholar 

  19. Yamaji M, Kato S, Tomonari K, Mamiya M, Goto K, Okamoto H, et al. Blue fluorescence from BF2 complexes of N,O-benzamide ligands: synthesis, structure, and photophysical properties. Inorg Chem. 2017;56:12514–9.

    Article  PubMed  CAS  Google Scholar 

  20. Grabarz AM, Laurent AD, Jędrzejewska B, Zakrzewska A, Jacquemin D, Ośmiałowski B. The influence of the π-conjugated spacer on photophysical properties of difluoroboranyls derived from amides carrying a donor group. J Org Chem. 2016;81:2280–92.

    Article  PubMed  CAS  Google Scholar 

  21. Bednarska J, Zaleśny R, Wielgus M, Jędrzejewska B, Puttreddy R, Rissanen K, et al. Two-photon absorption of BF2-carrying compounds: insights from theory and experiment. Phys Chem Chem Phys. 2018;8:5705–8.

    Google Scholar 

  22. Wu Y, Gou G, Wu X, Yang L, Fu W. Synthesis and spectroscopic properties of N,O-chelated pyridine-BF2 Complexes. Chin J Org Chem. 2017;37:704–10.

    Article  CAS  Google Scholar 

  23. Watanabe H, Tanaka K, Chujo Y. Position dependent effects of the aza-substitution on the electronic properties and crystal structures based on hexaazaphenalene isomers. Asian J Org Chem. 2022;11:e202200221.

    Article  CAS  Google Scholar 

  24. Tanaka K, Gon M, Ito S, Ochi J, Chujo Y. Recent progresses in the mechanistic studies of aggregation-induced emission-active boron complexes and clusters. Coor Chem Rev. 2022;472:214779.

    Article  CAS  Google Scholar 

  25. Ito S, Gon M, Tanaka K, Chujo Y. Molecular design and applications of luminescent materials composed of group 13 elements with an aggregation-induced emission property. Natl Sci Rev. 2021;8:nwab049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Ochi J, Tanaka K, Chujo Y. Recent progresses in the development of solid-state luminescent o-carboranes with stimuli responsivity. Angew Chem Int Ed. 2020;132:9841–55.

    Article  Google Scholar 

  27. Ito S, Gon M, Tanaka K, Chujo Y. Recent developments in stimuli-responsive luminescent polymers composed of boron compounds. Polym Chem. 2021;12:6372–80.

    Article  CAS  Google Scholar 

  28. Tanaka K, Chujo Y. Modulation of the solid-state luminescent properties of conjugated polymers by changing the connecting points of flexible boron element-blocks. Polym J. 2020;52:555–66.

    Article  CAS  Google Scholar 

  29. Tanaka K, Chujo Y. Frustrated element-blocks: A new platform for constructing unique stimuli-responsive luminescent materials. Polym J. 2023;55:353–64.

    Article  CAS  Google Scholar 

  30. Gon M, Tanaka K, Chujo Y. Concept of excitation-driven boron complexes and their applications for functional luminescent materials. Bull Chem Soc Jpn. 2019;9:7–18.

    Article  Google Scholar 

  31. Suenaga K, Tanaka K, Chujo Y. Design and luminescent chromism of fused boron complexes having constant emission efficiencies in solution and in the amorphous and crystalline states. Eur J Org Chem. 2017;2017:5191–6.

    Article  CAS  Google Scholar 

  32. Saotome S, Suenaga K, Tanaka K, Chujo Y. Design for multi-step mechanochromic luminescence property by enhancement of environmental sensitivity in a solid-state emissive boron complex. Mater Chem Front. 2020;4:1781–8.

    Article  CAS  Google Scholar 

  33. Suenaga K, Watanabe A, Tanaka K, Chujo Y. Design for purely-blue emissive polymer film based on the strategy for selective perturbation of energy levels of highest occupied molecular orbitals in solid-state luminescent boron complexes. Macromolecules. 2023;56:6419–25.

  34. Suenaga K, Uemura K, Tanaka K, Chujo Y. Stimuli-responsive luminochromic polymers consisting of multi-states emissive fused boron ketoiminate. Polym Chem. 2020;11:1127–33.

    Article  CAS  Google Scholar 

  35. Tanaka K, Chujo Y. Recent Progress of optical functional nanomaterials based on organoboron complexes with β-diketonate, ketoiminate and diiminate. NPG Asia Mater. 2015;7:e223.

    Article  CAS  Google Scholar 

  36. Yoshii R, Hirose A, Tanaka K, Chujo Y. Boron diiminate with aggregation-induced emission and crystallization-induced emission enhancement characteristics. Chem Eur J. 2014;20:8320–4.

    Article  PubMed  CAS  Google Scholar 

  37. Ito S, Fukuyama M, Tanaka K, Chujo Y. Effects of regioregularity of π-conjugated polymers composed of boron β-diketiminate on their stimuli-responsive luminescence. Macromol Chem Phys. 2022;223:2100504.

    Article  CAS  Google Scholar 

  38. Ito S, Yaegashi M, Tanaka K, Chujo Y. Reversible vapochromic luminescence accompanied by planar half-chair conformational change of a propeller-shaped boron β-diketiminate complex. Chem Eur J. 2021;27:9302–12.

    Article  PubMed  CAS  Google Scholar 

  39. Yamaguchi M, Ito S, Hirose A, Tanaka K, Chujo Y. Luminescent color tuning with polymer films composed of boron diiminate conjugated copolymers by changing connection points to comonomers. Polym Chem. 2018;9:1942–6.

    Article  CAS  Google Scholar 

  40. Yamaguchi M, Ito S, Hirose A, Tanaka K, Chujo Y. Modulation of sensitivity to mechanical stimulus in mechanofluorochromic properties by altering substituent positions in solid-state emissive diiodo boron diiminates. J Mater Chem C. 2016;3:5314–9.

    Article  Google Scholar 

  41. Kawano Y, Ito Y, Ito S, Tanaka K, Chujo Y. π-Conjugated copolymers composed of boron formazanate and their application for a wavelength converter to near-infrared light. Macromolecules 2021;54:1934–42.

    Article  CAS  Google Scholar 

  42. Aoyama Y, Sakai Y, Ito S, Tanaka K. Effects of central elements on the properties of group 13 dialdiminate complexes. Chem Eur J. 2023;29:e202300654.

    Article  PubMed  CAS  Google Scholar 

  43. Ito S, Hirose A, Yamaguchi M, Tanaka K, Chujo Y. Size-discrimination for volatile organic compounds utilizing gallium diiminate by luminescent chromism of crystallization-induced emission via encapsulation-triggered crystal-crystal transition. J Mater Chem C. 2016;3:5564–71.

    Article  Google Scholar 

  44. Ito S, Tanaka K, Chujo Y. Characterization and photophysical properties of a luminescent aluminum hydride complex supported by a β-diketiminate ligand. Inorganics 2019;7:100.

    Article  CAS  Google Scholar 

  45. Ito S, Hirose A, Yamaguchi M, Tanaka K, Chujo Y. Synthesis of aggregation-induced emission-active conjugated polymers composed of group 13 diiminate complexes with tunable energy levels via alteration of central element. Polymers 2017;9:68–78.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ito S, Ito Y, Tanaka K, Chujo Y. Near-infrared-emissive π-conjugated polymers based on five-coordinated silicon formazanate complexes. Polymer 2022;239:124463.

    Article  CAS  Google Scholar 

  47. Wang H, Li Q, Alam P, Bai H, Bhalla V, Bryce MR, et al. Aggregation-induced emission (AIE), life and health. ACS Nano. 2023;17:https://doi.org/10.1021/acsnano.3c03925.

  48. Gon M, Tanaka K, Chujo Y. Discovery of functional luminescence properties based on flexible and bendable boron-fused azomethine/azobenzene complexes with O,N,O-type tridentate ligands. Chem Rec. 2021;21:1358–73.

    Article  PubMed  CAS  Google Scholar 

  49. Gon M, Tanaka K, Chujo Y. π-Conjugated polymers based on flexible heteroatom-containing complexes for precise control of optical functions. Polym J. 2023;55:723–34.

    Article  CAS  Google Scholar 

  50. Ohtani S, Gon M, Tanaka K, Chujo Y. A flexible fused azomethine–boron complex: thermochromic luminescence and thermosalient behavior in structural transitions between crystalline polymorphs. Chem Eur J. 2017;23:11827–33.

    Article  PubMed  CAS  Google Scholar 

  51. Ohtani S, Takeda Y, Gon M, Tanaka K, Chujo Y. Facile strategy for obtaining luminescent polymorphs based on the chirality of a boron-fused azomethine complex. Chem Commun. 2020;56:15305–08.

    Article  CAS  Google Scholar 

  52. Ohtani S, Gon M, Tanaka K, Chujo Y. The Design Strategy for an Aggregation- and Crystallization-Induced Emission-Active Molecule Based on the Introduction of Skeletal Distortion by Boron Complexation with a Tridentate Ligand. Crystals 2020;10:615–26.

    Article  CAS  Google Scholar 

  53. Ohtani S, Gon M, Tanaka K, Chujo Y. Construction of the luminescent donor–acceptor conjugated systems based on boron-fused azomethine acceptor. Macromolecules 2019;52:3387–93.

    Article  CAS  Google Scholar 

  54. Ohtani S, Yamada N, Gon M, Tanaka K, Chujo Y. The effect of alkyl chain lengths on the red-to-near-infrared emission of boron-fused azomethine conjugated polymers and their film-state stimuli-responsivities. Polym Chem. 2021;12:2752–9.

    Article  CAS  Google Scholar 

  55. Ohtani S, Nakamura M, Gon M, Tanaka K, Chujo Y. Synthesis of fully-fused bisboron azomethine complexes and their conjugated polymers with solid-state near-infrared emission. Chem Commun. 2020;56:6575–8.

    Article  CAS  Google Scholar 

  56. Kanjo M, Gon M, Tanaka K. Stimuli-responsive π-conjugated polymers showing solid-state emission based on boron-fused azomethine complexes with NNO-tridentate ligands. ACS Appl Mater Interfac. 2023;15:31927–34.

    Article  CAS  Google Scholar 

  57. Gon M, Kanjo M, Ohtani S, Tanaka K, Chujo Y. Selective modulation of energy levels of frontier orbitals in solid-state luminescent boron-fused azomethine polymers with orthogonal orientation to the main-chains. Polym Chem. 2023;14:2893–901.

    Article  CAS  Google Scholar 

  58. Gon M, Tanaka K, Chujo Y. A highly efficient near-infrared-emissive copolymer with a N=N double-bond π-conjugated system based on a fused azobenzene-boron complex. Angew Chem Int Ed. 2018;57:6546–51.

    Article  CAS  Google Scholar 

  59. Nakamura M, Gon M, Natsuda S, Tamai Y, Ohkita H, Tanaka K, et al. Development of NIR emissive fully-fused bisboron complexes with π-conjugated systems including multiple azo groups. Dalton Trans. 2022;51:74–84.

    Article  CAS  Google Scholar 

  60. Gon M, Wakabayashi J, Nakamura M, Tanaka K, Chujo Y. Preparation of near-infrared emissive π-conjugated polymer films based on boron-fused azobenzene complexes with perpendicularly protruded aryl substituents. Macromol Rapid Commun. 2021;42:2000566.

    Article  CAS  Google Scholar 

  61. Wakabayashi J, Gon M, Tanaka K, Chujo Y. A near-infrared absorptive and emissive poly(p-phenylene vinylene) derivative containing azobenzene–boron complexes. Macromolecules 2020;53:4524–32.

    Article  CAS  Google Scholar 

  62. Nakamura M, Gon M, Tanaka K, Chujo Y. Solid-state near-infrared emission of π-conjugated polymers consisting of boron complexes with vertically projected steric substituents. Macromolecules 2023;56:2709–18.

    Article  CAS  Google Scholar 

  63. Gon M, Wakabayashi J, Nakamura M, Tanaka K, Chujo Y. Controlling energy gaps of π-conjugated polymers by multi-fluorinated boron-fused azobenzene acceptors for highly efficient near-infrared emission. Chem Asian J. 2021;16:696–703.

    Article  PubMed  CAS  Google Scholar 

  64. Gon M, Wakabayashi J, Tanaka K, Chujo Y. Unique Substitution Effect at 5,5’-Positions of Fused Azobenzene–Boron Complexes with a N=N π‐Conjugated System. Chem Asian J. 2019;14:1837–1843.

    Article  PubMed  CAS  Google Scholar 

  65. Gon M, Yaegashi M, Tanaka K Enhancement of near-infrared emission based on hypervalent germanium(IV)-fused azobenzene compounds with electron-donating groups. Bull Chem Soc Jpn. 2023; https://doi.org/10.1246/bcsj.20230120.

  66. Gon M, Morisaki Y, Tanimura K, Tanaka K, Chujo Y. Vapochromic films of π-conjugated polymers based on coordination and desorption at hypervalent tin(IV)-fused azobenzene compounds. Mater Chem Front. 2023;7:1345–53.

    Article  CAS  Google Scholar 

  67. Gon M, Yaegashi M, Tanaka K, Chujo Y. Near-infrared emissive hypervalent compounds with germanium(IV)-fused azobenzene π-conjugated systems. Chem Eur J. 2023;29:e202203423.

    Article  PubMed  CAS  Google Scholar 

  68. Gon M, Tanimura K, Yaegashi M, Tanaka K, Chujo Y. PPV-type π-conjugated polymers based on hypervalent tin(IV)-fused azobenzene complexes showing near-infrared absorption and emission. Polym J. 2021;53:1241–9.

    Article  CAS  Google Scholar 

  69. Gon M, Tanaka K, Chujo Y. Vapochromic luminescent π-conjugated systems with reversible coordination-number control of hypervalent tin(IV)-fused azobenzene complexes. Chem Eur J. 2021;27:7561–71.

    Article  PubMed  CAS  Google Scholar 

  70. Tanimura K, Gon M, Tanaka K. Effects of hypervalent bismuth on electronic properties of the azobenzene tridentate ligand and roles of lewis acidity in controlling optical properties. Inorg Chem. 2023;62:4590–7.

    Article  PubMed  CAS  Google Scholar 

  71. de Leeuw DM, Simenon MMJ, Brown AR, Einerhand REF. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth Met. 1997;87:53–9.

    Article  Google Scholar 

  72. Yoo D, Nakamura M, Kanjo M, Gon M, Watanabe H, Kita H, et al. Facile preparation of near infrared-luminescent protein complexes with conjugated polymers consisting of boron azobenzene units. Bull Chem Soc Jpn. 2023;96:659–62.

    Article  CAS  Google Scholar 

  73. Takahashi H, Watanabe H, Ito S, Tanaka K, Chujo Y. Design and synthesis of far-red to near-infrared chromophores with pyrazine-based boron complexes. Chem Asian J. 2023;18:e202300489.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by a Grant-in-Aid for Scientific Research (B) (JP21H02001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanaka, K. New strategy for lowering the energy levels of one frontier molecular orbital in conjugated molecules and polymers based on Aza-substitution at the isolated HOMO or LUMO. Polym J 56, 61–70 (2024). https://doi.org/10.1038/s41428-023-00843-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00843-z

This article is cited by

Search

Quick links