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Abstract
Crystalline porous molecular frameworks formed through intermolecular hydrogen bonding are often called hydrogen-
bonded organic frameworks (HOFs) by analogy to metal organic frameworks (MOFs) and covalent organic frameworks
(COFs). Although the origin may go back to the 1960s, HOFs have recently been investigated as a new family of functional
porous materials. In this review, HOFs composed of tritopic, tetratopic, and hexatopic carboxylic acid derivatives are
reviewed by considering structural aspects such as isostructurality. These derivatives typically form H-bonded hcb, dia, sql,
hxl, and pcu networks depending on the numbers, positions, and orientations of the carboxy groups in the molecule. We
show detailed structures for selected HOFs indicating the low-dimensional networks formed through H-bonding of the
molecule and higher-dimensional structures formed by assembly of the network. The networks can be designed and
predicted from the molecular structure, while the latter is still difficult to design. We hope that this review will contribute to
the well-controlled construction of HOFs.

Introduction

Crystalline porous materials made of molecular constituents
networked through intermolecular hydrogen bonds
(H-bonds) are termed hydrogen-bonded organic frame-
works (HOFs) [1] by analogy to metal organic frameworks
(MOFs) and covalent organic frameworks (COFs). Rever-
sible bond formation frequently results in framework
materials with crystallinities higher than those of other
framework materials. HOFs are a subset of porous mole-
cular crystals (PMCs) [2–9] and are particularly excellent
materials from the perspective of preorganization of the
frameworks. Namely, their structures are more readily
designed than those of other PMCs using supramolecular
synthons, which were defined by Desiraju as “structural
units within supermolecules which can be formed and/or
assembled by known or conceivable synthetic operations
involving intermolecular interactions.” [10] The

frameworks assembled by H-bonding also have other
names, such as supramolecular organic frameworks (SOFs)
[11], noncovalent organic frameworks (nCOFs) [12], and
porous organic salts (POSs) [13], depending on what
structural features are of interest.

In 1969, Duchampe and Marsh reported the first crystal
structure of a honeycomb network composed of 1,3,5-
benzenetricarboxylic acid (trimesic acid) [14]. The mole-
cules were networked through self-complementary H-
bonded dimerization of the carboxy groups. Similarly, a
H-bonded diamondoid network of adamantane-1,3,5,7-
tetracarboxylic acid was reported by Ermer in 1988 [15].
These were the pioneering studies of networked supra-
molecular architectures using directional H-bonds,
although they have no accessible pores inside the crystals
due to interpenetration of the networked structures. Many
H-bonded, networked architectures encapsulating solvents
or other guest molecules have been reported since the
1960s as inclusion crystals made from the supramolecular
synthons of 2-pyridone [16], alcohols [17], carboxylic
acids [18, 19], diaminotriazine (DAT) derivatives [20],
and others [21–27]. It should also be mentioned that the
conventional inclusion crystals are composed of low
symmetry molecules such as steroidal bile acid derivatives
[28–30] and dumbbell-shaped diols [31], which provide
inclusion spaces in the crystal.
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In 1997, Wuest et al. reported the structure of an inclu-
sion crystal formed from a tetraphenylmethane derivative
with DAT groups [20] and implied that the crystal retained
the structure after removing solvent molecules from the
voids. In 2011, Chen et al. reinvestigated the porosity of
the crystals and named the material HOF-1 [1]. HOF-1 was
the first example of an HOF to demonstrate selective
adsorption of C2H2 over C2H4. Since then, various HOFs
have been constructed via H-bonding of various functional
groups bonded to highly symmetric host molecules. The
general features of HOFs are as follows:

(1) Easy to make: HOFs can be prepared via facile
solvent processes, such as recrystallization and even
mechanical reactions.

(2) High crystallinity: The obtained crystals have large
domains with high crystallinity and are often formed
as large single crystals.

(3) Reusability: The HOFs can be reuses and regenerates
via solvent processes such as redissolution.

(4) Structural flexibility: Weak and reversible H-bonds
provide the HOFs with structural diversity and flexibility.

Among them, structural flexibility and diversity are
inextricably linked and lead to fragility and low desig-
nability. The removal of included molecules frequently
causes a structural transition and consequent collapse of the
structure, resulting in loss of the porosity and crystallinity.
The H-bonded groups may form H-bonds with solvent
molecules, resulting in the formation of unexpected, sol-
vated, nonporous structures. This unpredictability limits the
designability of HOFs. However, these issues have been
overcome with design strategies, including additional use of
intermolecular interactions other than H-bonding, such as
π-π stacking of rigid π-conjugated skeletons or charge-
assisted H-bonds formed between acidic and basic compo-
nents [32, 33].

To date, several excellent review articles have been
published on the design strategies, properties, and applica-
tions of HOFs [34–43]. This review, therefore, is focused
on the crystallographic structural details of HOFs composed
of carboxylic acid derivatives.

Carboxy groups are easily prepared by hydrolyzing
esters or cyano groups. Due to these facile syntheses and
moderate directivity (linearity) of the resulting H-bonded
motif, the group has been used as a molecular glue for
constructing supramolecular architectures. Although it
forms some supramolecular synthons [10], the self-
complementary dimer shown in Fig. 1a is used for HOF
construction in most cases because of its high probability
and designability [44, 45]. For example, it is reasonable to
expect that planar tritopic, tetratopic, and hexatopic car-
boxylic acid derivatives can form honeycomb (hcb), square
lattice (sql), and hexagonal (hxl) topological networks, as
shown in Fig. 1d–f, respectively, where the three-letter
symbols in italic bold font denote the network topology of
the frameworks and have been used for classification of the
frameworks [46]. Note that a H-bonded truncated dimer
(Fig. 1b) or ladder-like chain (Fig. 1c) can be formed
depending on the molecular structures and crystallization
conditions, resulting in other types of network structures.
Moreover, the molecular conformation also affects the
network topology: for example, twisted tetratopic car-
boxylic acids tend to form HOFs with diamonded (dia)
topological three-dimensional (3D) networks.

Tricarboxylic acids

Examples of tritopic carboxylic acid tectons include tri-
mesic acid (1) [14, 18, 19, 47, 48], 1,3,5-tris(4-carbox-
yphenyl)benzene (2) [49, 50] and its derivatives 3–9
[51, 52] and 13 [53], tris(4-carboxyphenyl)amine (10)
[54–57], 2,4,6-tris(4-carboxyphenyl)-1,3,5-triazine (11)
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Fig. 1 Three types of typical H-bonding with carboxy groups: (a)
complementary dimer, (b) truncated dimer, and (c) ladder-like chain
bonding of carboxylic acids. (d) Honeycomb (hcb), (e) square (sql),

and (f) hexagonal (hxl) topological networks composed of respective
planar tritopic, tetratopic, and hexatopic carboxylic acids

2 Y. Suzuki, I. Hisaki



[58], and 2,5,8-tris(4-carboxyphenyl)heptazine (12) [59], as
shown in Fig. 2. Among these, C3-symmetric molecules
with planar π-conjugated cores can form H-bonded hcb
networks, which are assembled with π-interactions to con-
struct interpenetrated HOFs in many cases and non-
interpenetrated layered HOFs in a few cases.

It is well known that 1 gives nonporous C2/c crystals
composed of interpenetrated hcb undulated networks con-
nected through dimerized carboxy groups. The crystal is the
first structure reported for 1 [14]. Since then, a number of
crystal structures have been reported for 1, such as the non-
interpenetrated layered structure with the P31 (or P32) space
group reported by Herbstein et al. [18]. Also, Day and Cooper
et al. discovered eight new “hidden” polymorphs and/or
pseudopolymorphs of 1 using crystal structure prediction
(CSP) methodology combined with robotic crystallization
screening [47], and revealed that one of them, pentane-
solvated TMA_2-33 with the P3121 space group, was con-
verted to a new solvent-free HOF, δ-TMA, with the C2/m
space group. δ-TMA had a noninterpenetrated layered struc-
ture with AB stacking (Fig. 3a). Banerjee et al. also found that
the P3121 crystals of 1, TMA Form II, obtained from a THF
solution had a noninterpenetrated layered structure with an
ABC stacking pattern (Fig. 3b), and they demonstrated that
this form converted to the interpenetrated form (TMA Form
I) at room temperature via intermediate structures, which was
confirmed by PXRD and FESEM analyses [48].

The HOFs composed of tectons 2 and 3–9 have homo-
typic hcb network sheet motifs formed through H-bonded
dimers. However, the assembling mechanisms of the sheets
differed depending on the substituted functional groups
bonded to the central benzene ring. The resultant structures
were categorized into four distinct types: simple stacking,
single-layer offset interpenetration, double-layer offset
interpenetration, and rotated-layer interpenetration. Only 7
formed a simply stacked noninterpenetrated assembly for
the HOF TCPB-OMe (Fig. 3c) [52], while HOFs composed
of tectons 3, 6, and 7 (HOF-12, TCPB-Me, and TCPB-
MeOMe, respectively) had structures with single-layer
offset interpenetration, which is the most common assembly
manner for the tritopic carboxylic acid tectons (Fig. 3d–f).
The parallel layers slip along each other, leading to a gap
into which one layer is interpenetrated. HOF TCPB-NO2,
on the other hand, showed a structure with double-layer
offset interpenetration (Fig. 3g) [52]. HOFs TCPB and
TCPB-NH2 exhibited rotated-layer interpenetration struc-
tures (Fig. 3h, i) [49, 52]. This assembly involved a two-

axis interpenetration of specific layered networks, which
were classified as two distinct layers (the A and B layers of
simple stacking hexagonal sheets). The B layer was a
rotated layer comprising the simple stacking hexagonal
sheet. The B layer was rotated by 60° relative to the A layer.
The number of layers varied depending on the constituent
molecules: three and four layers for TCBP and three and
three layers for TCBP-NH2.

Two HOFs composed of 10 were reported, that is,
IISERP-HOF1 [54] and HOF-11 [55], in which the carboxy
groups formed H-bonded dimers. Both had almost the same
porous structures with 1D channels and 11-fold interpenetrated
(10,3)-b topological networks, although the crystallographic
lattices of IISERP-HOF1 and HOF-11 were slightly different
depending on the crystallization conditions (in acetic acid at
150 °C and in THF at room temperature, respectively).
Meanwhile, the pseudopolymorphic HOF HOF-16 [56, 57],
contained carboxy groups that did not form intermolecular
H-bonds, which allowed efficient separation of C3H6/C3H8 via
interactions between the gas molecules and the free carboxy
groups [57]. This pseudopolymorph provided an example of
functionalization that takes advantage of the weakness of
H-bonds and simultaneously showed the difficulty of con-
structing isostructural HOFs.

1,3,5-Triazine derivative 11 also formed a H-bonded hcb
network, which, however, was not a planar hcb sheet but was
undulated and polycatenated with other parallel sheets,
resulting in intricate crisscrossed 3D structures (PFC-11, -12,
-13) [58]. An undulated hcb network was also observed in the
first crystal structure of 1 [14]. Heptazine derivative 12, on
the other hand, formed no hcb network but 1D strands, where
two of the three carboxy groups in 12 formed a truncated
H-bonded dimer, although the molecule was the same
C3-symmetric tritopic carboxylic acid seen in other tectons
[59]. The heteromeric HOF HcOF-101 was obtained by
cocrystallization of 1 and the o-alkoxycarboxylic acid deri-
vative 13 [53]. The resultant HOF was subjected to a thiol-
ene crosslinking reaction in the presence of ethanedithiol,
which formed covalently linked stable porous materials.

Tetracarboxylic acids

4-Connected tectons containing four carboxy groups lying in
the same plane are shown in Fig. 4. They have the planar or
quasiplanar skeletons of benzene 14 [60, 61], N-containing
polycyclic structures 15–17 [60–63], tetrathiafulvalene 18
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Fig. 2 Chemical structures of the
tricarboxylic acid tectons that
form HOFs. He names of the
resultant HOFs are also
presented at the bottom
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[60, 64, 65] and 19 [66], tetraphenylethene 20 [67] and 21
[68], pyrene 22–27 [69–72] and 32 [73], 1,2,3,6,7,8-hexahy-
dropyrene 33 [73], porphyrin 28 [74–76], metalloporphyrin
28Co and 28Cu [77], and terphenyl analogs 29–31 [78–80].

π-Conjugated planar tectons tend to form rhombic net-
works with sql topologies. These homotypic networks are
assembled by stacking through π-π and/or CH-π interactions
to form layered frameworks. Unlike the hcb lattices formed

Fig. 3 Crystal structures of HOFs composed of tritopic carboxylic
acids. a δ-TMA formed from 2, b TMA_2-33 or TMA Form II formed
from 2, c TCPB-OMe formed from 7, d TCPB-Me formed from 6,
e HOF-12 formed from 3, f TCPB-MeOMe formed from 8, g TCPB-

NO2 formed from 4, h TCPB formed from 2, and (i) TCPB-NH2

formed from 5. (Top) Hexagonal network, (Middle) top view of
assemblies, and (bottom) side view of assemblies. Disordered moieties
were omitted for clarity
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with C3-symmetric tectons, interpenetrated structures are
not common for the planar tetracarboxylic acids, pre-
sumably because of the lower symmetry of a sql network
compared with that of an hcb network and/or the stabili-
zation effect of layered stacking structures. The compounds
listed in Fig. 4 basically construct 2D layered porous
structures. The 2D sheets accumulate with the following
nonuniform assembly manners, that is, AA stacking, AB
stacking, and others, such as correlation offset stacking,
resulting in the formation of nonisostructural HOFs.

Tectons 14 and 20 gave the HOFs X-Ph [60] and CPE [67]
with AB stacking of homotypic 2D networks (Fig. 5a, e),
while tectons 15, 16, 17, 29, 30, 31 gave isostructural HOFs
(CP-PP [62], X-PyQ [60], BrPQ [63], ABTPA-1 [78],
BITA-1 [79], and BTTA-1 [80], respectively) with similar
AA-stacking structures (Fig. 5b–d, f–h). The HOFs CP-PP,
X-PyQ, and BrPQ underwent drastic structural changes
involving rearrangement of H-bonds upon removal of the
accommodated solvent molecules, while the HOFs
ABTPA-1, BITA-1, and BTTA-1 basically retained their
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Fig. 4 Chemical structures of
tetracarboxylic acids forming
2D layered HOFs. The names of
the resultant HOFs are also
presented in bold

Fig. 5 Crystal structures of (a) X-Ph, (b) CP-PP, (c) X-PyQ, (d) BrPQ,
(e) CPE, (f) BTIA-1, (g) BTTA-1, (h) ADTPA-1, (i) CP-Py, and (j)
CP-Hp. (Top) Square-lattice networks and assembled structures,
(middle) viewed down, and (bottom) viewed from the side. The

disordered moieties were omitted for clarity. These structures were
obtained from the SCXRD experiment except for BTIA-1, which was
analyzed from the PXRD experiment. The HOF CPE in (e) was
described only in the Supporting Information for ref. [67]
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porous structures, except for subtle structural changes such
as stacking orders and molecular conformations, and they
showed Brunauer‒Emmett‒Teller (BET) surface areas of
1183 m2g−1, 720 m2g−1, and 1145 m2g−1, respectively. It
should be noted that tecton 21 gave the HOF CBPE, in
which 21 formed isomorphic H-bonded sql 2D sheets, and
the sheets were interpenetrated three-directionally to give a
wvm-like weave porous structure exhibiting mechan-
ochromic photofluorescence. It was proposed that formation
of the weave structure in CBPE arose from the dispropor-
tionate conformation of the outer four phenylene rings in
the peripheral biphenyl arms [68]. Tectons 32 and 33
yielded isostructural HOFs (CP-Py-1 and CP-Hp-1,
respectively) with almost identical cell parameters
(Fig. 5i, j) [73]. Interestingly, the similarity of these HOFs
allowed 32 and 33 to form nonstoichiometric cocrystalline
frameworks (CP-HpPy-1) when the compounds were
cocrystallized with various composition ratios. CP-Py-1
was also revealed to exhibit static and dynamic flexibility
depending on the desorption and adsorption of various
guest molecules [81].

The porphyrin-based tectons 28, 28Cu, and 28Co
formed H-bonded sql network sheets, which were stacked in
an AB-stacking manner to give the series of porous fra-
meworks PFC-71, -72, and -73, respectively. In the HOFs,
the offset stacking manner of the sql networked sheets was
modulated by the metal species (Fig. 6a–c), resulting in
different BET surface areas (600 m2g−1 for PFC-71,

1646 m2g−1 for PFC-72, and 1714–1856 m2g−1 for PFC-
73) [77]. In addition to a 2D layered assembly, a 3D porous
structure of the interpenetrated sql network (HOF-6) [74]
shown in Fig. 6d and a layered porous structure (PFC-5
[75] and PFC-33 [76]) formed by branched H-bonds of the
carboxy groups shown in Fig. 6e, f were also reported.
Porphyrin-based HOFs and their composites have been used
as catalysts for photooxygenation of amyloid-β [74] and for
photoinduced CO2 reduction [77] in addition to selective
separation materials [75].

The formation of versatile layered HOFs was reported for
TTF-based tectons 18 and 19 (Fig. 7) [60, 64–66]. In the
structure of X-TTF, the sql layers were accumulated in the
AA stacking manner, while the others were accumulated in
the AB stacking manner. TTF-based HOFs underwent
drastic structural changes upon solvent removal or solvent
exchange, as in the cases of CP-PP, X-PyQ, and BrPQ.
The PXRD changes indicated that X-TTF changed its fra-
mework structure upon removal of solvent molecules [60].
PFC-77, which was obtained from a water and THF mixed
solution, transformed into PFC-78 upon immersion in
acetone, and moreover, PFC-77 or PFC-78 transformed
into PFC-79 with a denser framework upon immersion in
dichloromethane [64]. The structure of PFC-79 contained a
tetrameric 2D H-bonded node composed of four carboxy
groups, which was also formed in BrPQ [63]. TTF-based
tectons tend to form versatile porous frameworks, such as
MUV-20a and MUV-20b with the abovementioned

Fig. 6 Crystal structures of (a) PFC-71, (b) PFC-72, (c) PFC-73, (d) HOF-6, (e) PFC-5, and (f) PFC-33. In the case of (e) and (f), the carboxy
groups formed no self-complementary dimers but branched H-bonded motifs. Disordered moieties were omitted for clarity
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tetrameric node and MUV-21 with larger honeycomb-like
channels [65], the former two of which presented zwitter-
ionic character and showed semiconduction with con-
ductivities up to 1.35 × 10−6 Scm−1 [65]. TTF derivative 19
with 2-carboxynaphth-6-yl groups formed a homotypic
network similar to that of 18 with 4-carboxyphenyl groups
[66]. The resultant HOF-110 showed offset stacking similar
to that of PFC-78 and became conductive after post-
synthetic incorporation of iodine in the porous channels of
the framework [66].

Isostructural HOFs were formed by the pyrene-based
tectons 22–27 [69–72] via spacer modification approaches
(Fig. 8). Pyrene-based tectons were reported to yield a series
of isostructural HOFs with AA stacking of homotypic sql
networked sheets. In 2018, Cao et al. reported that 23 gave
PFC-1, which had a thermally and chemically stable porous

framework with a BET surface area of 2122 m2g−1, and
demonstrated that the HOF encapsulated doxorubicin for
synergistic chemo-photodynamic therapy [70]. Li and Farha
et al. reported that pyrene derivatives 23, 24, 25, and 26
with 4-carboxyphenyl, 2-carboxynaphthyl, 3-methyl-4-car-
boxyphenyl, and 3-amino-4-carboxyphenyl groups,
respectively, gave single-crystalline isostructural HOFs,
while 22 and 27 with carboxy and 4-carboxy-3-
fluorophenyl groups, respectively, gave isostructural crys-
talline precipitates whose structures were estimated from
PXRD experiments [69, 71]. In the isostructural HOFs, the
2D sql networks were assembled by shape matching π-π
stacking. Among them, HOF-102 exhibited the largest void
channel with an aperture of 2.5 nm × 3.0 nm and a BET
surface area of 2500 m2g−1 and was capable of adsorbing
biomolecules such as cytochrome c [69]. Chen et al. also

Fig. 7 Crystal structures of (a) PFC-77, (b) X-TFF, (c) PFC-78, and (d) HOF-110. Disordered moieties are omitted for clarity

Fig. 8 Crystal structures of (a) PFC-1(HOF-101), (b) HOF-14 (HOF-102), (c) HOF-101-CH3, and (d) HOF-101-NH2. Disordered moieties were
omitted for clarity

Structural details of carboxylic acid-based Hydrogen-bonded Organic Frameworks (HOFs) 7



reported that 24 yielded HOF-14 with high stability and
porosity [72]. HOFs-101-CH3, -NH2, and -F were reported
as chemically engineered frameworks of HOF-101. HOF-
101-F showed a 10- to 60-fold enhancement in the gen-
eration of reactive oxygen species (ROS) and a 10- to 20-
fold greater ROS storage ability compared to traditional
TiO2 and C3N4 self-cleaning materials [71]. From a struc-
tural perspective, HOF-103-CH3 and -NH2 had slightly
longer interlayer distances and offsets due to their steric
hindrance (former: 3.42 Å and 1.71 Å, latter: 3.46 and
1.73 Å), and those lengths in PFC-1 and HOF-14 were
similar (former: 3.39 Å and 1.65 Å, latter: 3.40 and 1.67 Å).
Tecton 23 was also reported to give Kagome-like isomeric
HOF PFC-2 containing a large channel with a diameter of
2.97 nm [81]. Interestingly, single crystals of PFC-2 were
obtained by recrystallization of 23 from a DMF and ethanol
solution at 90 °C in the presence of equimolar 1,4-bis(4-
(3,5-dicyano-2,6-dipyridyl)dihydropyridyl)-phenylbenzene
(L2), while only a crystalline powder was formed without L2

[81]. In contrast with 1,3,6,8-substituted pyrene derivatives
such as 23, 4,5,9,11-substituted pyrene derivative 32 gave a
flexible HOF because the substituent aryl groups prevented
the pyrene core from π-π stacking: CP-Py-1 was trans-
formed into CP-Py-3 via CP-Py-2 through shrinkage of the
framework and rearrangements of the H-bonds [82].

4-Connected tectons containing four non-coplanar car-
boxy groups are shown in Fig. 9. Tectons with the cores
methane 34 [83], silane 35 [83], and adamantane 36 [47]
and 37 [83] have tetrahedral (T4) symmetry. Others have
twisted and/or nonplanar skeletons, as with biphenyls
38–40 [61, 84–86], tetra[2,3]thienylene 41 [87], 5’-phenyl-
m-terphenyl 42 [88], p-phenylenediamine 43 [89], 18-
crown-6-ether 44 [90], and dibenzo[g,p]chrysene 45–48
[91, 92]. Most of these nonplanar tetratopic tectons form
diamonded (dia) topological networks through H-bonding,
and assembly of the networks also proceeded in parallel
with the networking through weaker noncovalent interac-
tions, such as van der Waals interactions, to give inter-
penetrated frameworks. When the single H-bonded network
has an inside pore larger than the size of the molecular
components, additional networks are formed in the pore,
leading to the formation of interpenetrated, less porous
framework structures. Homotypic networks are easily
obtained from complementary H-bonded dimers of carboxy

groups, while the entire structures are not always iso-
structural because interactions between the networks
depend on the molecular structure.

T4-symmetric tectons 34–37 formed dia topological
H-bonded networks, which assembled into interpenetrated
HOFs through nondirectional weak interactions. Tectons 34
and 35 gave the corresponding porous HOFs TCF-1 and
TCF-2, both of which showed 6-fold interpenetrated dia
networks. On the other hand, TCF-1 had 1D channels,
while TCF-2 had 3D-networked channels, depending on
the interpenetration manner of the single network [83]. CSP
screening was successfully applied with 36 to experimen-
tally observe the solvated HOFs ADTA-2 and -3 with 2-fold
and 3-fold interpenetration, respectively, in addition to the
known form with 5-fold interpenetration [47]. Expanded
tecton 37, on the other hand, gave the nonporous structure
TCF-3, in which the presence of THF molecules disrupted
the formation of H-bonded dimers by the carboxy groups
[83]. Since there are no directional interactions in the net-
works of non-π-conjugated molecules, the assembly manner
is readily variable depending on the molecular structure,
guest molecules, and crystallization conditions, resulting in
a wide variety of porous structures. Moreover, even if they
exhibited persistent porosity, they often underwent struc-
tural transitions after guest removal.

Tectons 38–40 formed H-bonded, three-dimensionally
networked frameworks because of the twisted conforma-
tions of their sterically hindered biphenyl cores. Their
HOFs, HOF-TCBP, ZJU-HOF-10, and HOF-15, showed
the same dia topological network, while the shape, assem-
bly manner, and number of interpenetrated network struc-
tures depended on the substituent groups. Pristine tecton 38
exhibited π-π stacking in the 5-fold interpenetrated HOF-
TCBP (Fig. 10a) [84], while the methyl and methoxy
substituents in 39 and 40, respectively, forced the central
biphenyl moieties to assemble via CH-π interactions instead
of π-π interactions, resulting in the 6-fold and 7-fold inter-
penetrated HOFs ZJU-HOF-10 [86] and HOF-15 [85],
respectively (Fig. 10b, c). Tecton 41 formed the 6-fold
interpenetrated HOF TT-TC, in which dia network struc-
tures were assembled by π-π stacking (Fig. 10d) [87].
Interestingly, a change in the molecular structure of 41
triggered by the removal of the solvent molecules resulted
in jumping behavior of the HOF crystals. The
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Fig. 9 Chemical structures of
tetracarboxylic acids forming
3D H-bonded networked HOFs.
Names of the resultant HOFs are
also presented in bold
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heterobiphenyl tecton 42 with carboxy and
4-carboxyphenyl groups gave HOF-20, which had a 4-fold
interpenetrated ThSi2 topological H-bonded network
(Fig. 10e) [88]. HOF-20 exhibited efficient turn-up fluor-
escent sensing of aniline in water with a detection limit of
2.24 μM. Tecton 43 had p-phenylenediamine moieties with
a perpendicular orientation of the phenylene core relative to
the amine moieties and formed the 10-fold interpenetrated
framework HOF-30 with a topological H-bonded network
(Fig. 10f) [89]. Tecton 44 included a flexible 18-crown-6-
ether moiety, and therefore, the resultant HOF 2CT-18C6-
III was nonporous, and the H-bonded network in the HOF
was very complicated [90]. Tectons 45–48 had dibenzo[g,p]
chrysene cores and formed robust 1D stacked columnar
structures due to shape-filled docking of the twisted
π-conjugated skeleton, which gave the isostructural porous

HOFs CPDBC-1 [91], C1N4DBC-1, C1N5DBC-1, and
C2N6DBC-1 [92]. Although the structures of their solvated
frameworks were similar, their dynamic behaviors during
desorption and adsorption of solvent molecules were dif-
ferent depending on the chemical structures of the spacer
moieties.

Hexacarboxylic acids

The molecular structures of hexatopic tectons are shown in
Fig. 11. They typically have π-conjugated cores with ben-
zene 49 [93], 50 [94], and 67 [95], triphenylene 51 [96], 52
[97], and 53 [97], acetylene bridged macrocycles 54 [98],
55 [99], 56 [98, 100], and 57 [98], bowl-shaped sumanene
58 [101], hexaazatriphenylene (HAT) 59 [102], 60 [103],

Fig. 10 Crystal structures of (a) HOF-TCBP, (b) ZJU-HOF-10, (c) HOF-15, (d) TT-TF, (e) HOF-20, and (f) HOF-30 with 5-, 6-, 7, 6-, 4-, and
10-fold interpenetrated frameworks. (Top) Assembled porous structures and (Bottom) a single dia-network colored gray and 1D assembled
columnar structures, for which the number of colors in the stacked molecules correspond to the number of interpenetrated frameworks. Guest
molecules and disordered moieties were omitted for clarity
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61 [104], and 62 [104], hexaazatrinaphthylene (HATN) 63
[105], benzotriquinoxaline 64 [106], quinoxaline-annelated
dehydro[12]annulene 65 [107], tri(dithiolylidene)cyclohex-
anetrione 66 [108], and triptycene 68 [109] and 69 [110], as
well as 18-crown-6-ether 70 [111].

These tectons have 4,4’-dicarboxy-o-terphenyl and ana-
logous substructures, which form robust H-bonded cyclic
trimers, or so-called phenylene triangles (PhT) (Fig. 12a).
Formation of a PhT motif consequently results in expansion
of the hxl topological hexagonal network. Tectons with
planar π-conjugated hydrocarbon cores (49, 51, 52, 53, 54,
55, 56, and 57) and those with a planar N-hetero

π-conjugated core (63) formed homotypic hlx sheets,
which were stacked in an inverted fashion through π-π,
CH-π and CH-O interactions to give noninterpenetrated,
layered HOFs with AB stacking, although optimization of
the recrystallization conditions, such as the temperature and
the combination of solvents, was needed. The resulting
offset arrangements of the AB stacked layers, on the other
hand, differed from each other depending on the core
structures [98] and substituents at the ortho-positions rela-
tive to the carboxy groups [97, 99].

Kobayashi et al. reported the first crystal structure of a
layered hlx network with hexasubstituted benzene

O
OO

O

HH

O
O

OO

H

O
O

O
O

H

H

H

CO2HHO2C

Fig. 12 a H-bonded motif, the so-called phenylene triangle (PhT),
formed from 4,4’-o-terphenyl moieties. Crystal structures of HOFs
possessing layered hexagonal network structures: (b) HCBP, (c) Tp-1,
(d) TpF-1, (e) TpMe-1, (f) T12-1, (g) T12F-1, (h) T18-1, and (i) Ex-

1. Hexagonal network; in (a), the PhT motif contains at least one
twisted H-bonded dimer due to conformational frustration. Guest
molecules were omitted for clarity
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derivative 49. The crystals of the HOF HCPB were
obtained by recrystallization from methanol solution
with and without the guest molecule 2,7-dimethox-
ynaphthalene. In the crystal structure, the peripheral phe-
nylene groups of 49 were almost perpendicular to the
central benzene ring due to steric hindrance, which
resulted in a longer interlayer distance of 5.6 Å for the
HOF [93]. Triphenylene-based tecton 51 formed four
polymorphic HOFs, Tp-1, -2, -3, and -4 [96]. Generation
of the polymorphs originated from versatile locations and
conformational frustration of the PhT moieties: namely,
adjacent peripheral phenylene groups of the 4,4’-dicar-
boxy-o-terphenyl in 51 were inclined in the same direction
to avoid steric repulsion between them, and therefore, the
PhT motif included at least one conformationally fru-
strated H-bonded carboxyl dimer, as shown in Fig. 12a
[96]. The activated HOF Tp-a, which was characterized
by a combination of CSP and experimental PXRD mea-
surements, exhibited permanent porosity with a BET
surface area of 718 m2g−1 [98]. The triphenylene-based
tecton 52 also gave polymorphic HOFs with layered hlx
sheets (TpMe-1, -2, and -3) due to the versatile con-
formations of the sterically hindered peripheral groups
[97]. Tecton 53 gave the HOF TpF-1, in which the per-
ipheral groups were disordered in two positions due to
steric hindrance [97]. The π-conjugated cyclic tectons 54,
55, 56, and 57 formed homotypic hlx sheets with scalene
hexagonal apertures, and the longer side lengths ranged
from 4.6 to 11.4 Å depending on the size of the macro-
cycle [98]. The resultant HOFs T12-1, T18-1, and Ex-1

had solvent accessible voids of 41%, 58%, and 59%,
respectively, calculated by PLATON software with a
proven radius of 1.2 Å. After activation, T12-1 retained its
crystallinity and permanent porosity with a BET surface
area of 557 m2g−1 and showed reversible dynamic struc-
tural changes among four different crystalline states dur-
ing CO2 sorption [112]. The photodynanic behaviors of
HOFs T12-1 and Ex-1 were also investigated by Douhal
et al. with fluorescence microscopy applied to single HOF
crystals [113, 114].

HATN derivative 63 gave the HOF CPHATN-1a with a
BET surface area of 379m2g−1 (Fig. 13a). Upon exposure to
acids such as HCl, CPHATN-1a changed color from yellow to
reddish brown, and the original color was recovered when the
acid was removed [105]. Wang and Jiang et al. applied
CPHATN-1a as a cathode material in a lithium-ion battery
[115]. Analogs 64 [106] and 65 [107] formed the layered HOFs
CPBTQ-1 and TQ12-1 with quasi hlx structures (Fig. 13b, c),
in which the carboxy groups formed truncated interlayer
H-bonds as well as the complementary dimer (Fig. 13d, e). In
particular, 64 formed a complicated, low-symmetry, layered
structure with ABCD stacking [106]. CPBTQ-1 and TQ12-1
also showed color changes from yellow to reddish brown upon
exposure to HCl due to the proton-responsive pyrazine rings
incorporated in the π-conjugated systems.

When a tecton with a bowl-shaped π-conjugated core is
used to construct a HOF, the resultant H-bonded network
differs drastically from those composed of planar tectons.
The sumanene derivative 58 gave two HOFs, CPSM-1 and
CPSM-2; the former had a layered structure composed of

Fig. 13 Crystal structures of (a) CPHATN-1, (b) CPBTQ-1, and (c)
TQ12-1. (top) Hexagonal networks and assembled structure (middle)
viewed down and (bottom) viewed from the side. d Interlayer H-bonds
with the truncated tetramer fashion observed in CPBTQ-1. e Interlayer

H-bonds with the water-incorporated truncated tetramer observed in
TQ12-1. Guest molecules and disordered moieties were omitted for
clarity
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ungulated hlx sheets, while the latter had exotic bilayered
structures with a complicated topological network formed
through an H-bonded trefoil knot [101]. Even when using a
tecton whose π-conjugated core was apparently flat, the
resultant HOF may have a three-dimensionally networked
framework. For example, HAT derivative 59 exhibited a
nonplanar propeller-shaped twisted conformation in the
crystalline state, probably due to the packing force, which
resulted in the formation of a 3D pcu network through helical
H-bonds instead of a 2D hxl network (Fig. 14a, e, f) [102].
The 3D networked structures were assembled uniformly
through π-stacking to form a 4-fold interpenetrated porous
structure. Importantly, the twisted cores stacked in a shape-
fitted fashion to yield a robust 1D columnar architecture,
which played a role in stabilizing the HOF. Indeed, the
activated HOF CPHAT-1a retained single crystallinity and
exhibited a BET surface area of 649 m2g−1 and heat resis-
tance up to 339 °C. A series of HAT derivatives 60, 61, and
61 also formed the isostructural HOFs CBPHAT-1,
TolHAT-1, and ThiaHAT-1, respectively (Fig. 14b–d),
which had 6-, 8-, and 8-fold interpenetrated structures with
the same pcu topological network, and the pore sizes were
determined by the arms with different lengths [103, 104].
The BET surface areas of the HAT systems ranged from
649m2g−1 to 1394m2g−1. These HOFs also showed HCl-
induced color changes due to the pyrazine rings incorporated
in the π-conjugated cores [104, 116]. The hexa-substituted
benzene derivative 50 formed HOF-76 with a pcu network
without interpenetration due to the slightly twisted molecular

conformation (Fig. 14g, h). The HOF exhibited a BET sur-
face area of 1100m2g−1 and showed preferential binding of
C2H6 over C2H4 and thus highly selective separation of
C2H6/C2H4 mixtures [94]. The HOF CPDC-1 was con-
structed from the bis(4-carboxyphenyl)dithiol-based tecton
66, in which the angle between the two 4-carboxyphenyl
groups was ca. 73° (Fig. 14i, j) [108]. The angle was smaller
than that of the 4,4’-dicarboxy-o-terphenyl group. Therefore,
66 formed an anomalistic, noninterpenetrated, helical net-
work denoted by the {82.10} point symbol instead of a hxl or
pcu network. Tecton 67 formed the 3-fold interpenetrated
HOF ZJU-HOF-1 with a BET surface area of 1465m2 g−1,
which showed a high C2H6 uptake capacity and excellent
C2H6/C2H4 selectivity [95]. Another type of hexatropic tec-
tonism is triptycene-based tectonism. Tecton 68 formed the
polymorphic HOFs PETHOF-1 and PETHOF-2, in which a
single network exhibited the same hexagonal topology acs,
while the network was interpenetrated in different ways to
form two kinds of HOFs [109]. The tecton 69 yielded the
HOF PETHOF-3 with a topological network unlike those of
the former two [110]. The 18-crown-6-ether tecton 70 yiel-
ded the HOF 3CT-18C6-I possessing a layered structure
with hexagonally networked 2D sheets [111].

Conclusion

In this review, we reviewed hydrogen-bonded frameworks
(HOFs) composed of tritopic, tetratopic, and hexatopic
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carboxylic acid derivatives from a structural perspective.
Since the carboxy groups formed predictable linear dimers
through reversible H-bonding in many cases, the dimers were
applied as supramolecular synthons to construct designed
networked structures; for example, tritopic planar tectons can
give an hcb network, nonplanar and planar-shaped tetratopic
tectons can give dia and sql networks, respectively, and
planar hexatopic tectons can give an hxl network. The higher
dimensional structures formed by assembling the network
structure, however, are still difficult to design due to the
weaker and less-directional interactions between the net-
works. Moreover, even slight distortion of the tectons results
in the formation of unpredicted networks, such as the pcu
network formed by apparently planar hexasubstituted tectons.
Therefore, these two issues are the next topics to be resolved
for well-controlled construction of HOFs.
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