Abstract
Peptides are versatile molecular tools that can self-assemble and participate in molecular recognition processes. Our group has developed rationally designed peptides that (1) bind to the inside of microtubules and (2) cause light-induced peptide nanofiber growth. This focus review describes the construction of new bio-nanoarchitectures using these peptide-based technologies. A newly developed Tau-derived peptide was used to encapsulate various nanomaterials inside microtubules, thereby modulating the structure and function of the microtubules. Moreover, the propulsion of micrometer-sized spheres driven by light-induced peptide nanofiber growth was accomplished. These methods represent new concepts for bio-nanomaterials that mimic, control and surpass natural systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Davis JT. G-quartets 40 years later: from 5′-GMP to molecular biology and supramolecular chemistry. Angew Chem Int Ed. 2004;43:668–98.
Fletcher DA, Mullins RD. Cell mechanics and the cytoskeleton. Nature. 2010;463:485–92.
Pieters BJGE, van Eldijk MB, Nolte RJM, Mecinović J. Natural supramolecular protein assemblies. Chem Soc Rev. 2015;45:24–39.
Chen H, Liu N, He F, Liu Q, Xu X. Specific β-glucans in chain conformations and their biological functions. Polym J. 2022;54:427–53.
Shibata A, Higashi SL, Ikeda M. Nucleic acid-based fluorescent sensor systems: a review. Polym J. 2022;54:751–66.
Sawada T, Mihara H, Serizawa T. Peptides as new smart bionanomaterials: molecular-recognition and self-assembly capabilities. Chem Rec. 2013;13:172–86.
Pelay‐Gimeno M, Glas A, Koch O, Grossmann TN. Structure-based design of inhibitors of protein–protein interactions: mimicking peptide binding epitopes. Angew Chem Int Ed. 2015;54:8896–927.
Groß A, Hashimoto C, Sticht H, Eichler J. Synthetic peptides as protein mimics. Front Bioeng Biotechnol. 2016;3:211.
Hamley IW. Small bioactive peptides for biomaterials design and therapeutics. Chem Rev. 2017;117:14015–41.
Inaba H, Matsuura K. Peptide nanomaterials designed from natural supramolecular systems. Chem Rec. 2019;19:843–58.
Ariga K, Minami K, Ebara M, Nakanishi J. What are the emerging concepts and challenges in NANO? Nanoarchitectonics, hand-operating nanotechnology and mechanobiology. Polym J. 2016;48:371–89.
Ariga K. Materials nanoarchitectonics in a two-dimensional world within a nanoscale distance from the liquid phase. Nanoscale. 2022;14:10610–29.
Ariga K, Fakhrullin R. Materials nanoarchitectonics from atom to living cell: a method for everything. Bull Chem Soc Jpn. 2022;95:774–95.
Huang Y, Wiedmann MM, Suga H. RNA display methods for the discovery of bioactive macrocycles. Chem Rev. 2019;119:10360–91.
Kondo T, Iwatani Y, Matsuoka K, Fujino T, Umemoto S, Yokomaku Y, et al. Antibody-like proteins that capture and neutralize SARS-CoV-2. Sci Adv. 2020;6:eabd3916.
Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, et al. Highly accurate protein structure prediction with AlphaFold. Nature. 2021;596:583–9.
Watson JL, Juergens D, Bennett NR, Trippe BL, Yim J, Eisenach HE, et al. Broadly applicable and accurate protein design by integrating structure prediction networks and diffusion generative models. bioRxiv. 2022. https://doi.org/10.1101/2022.12.09.519842.
Fojo T, editor. The role of microtubules in cell biology, neurobiology, and oncology. Totowa, NJ: Humana Press; 2008.
Pampaloni F, Florin E-L. Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials. Trends Biotechnol. 2008;26:302–10.
Conde C, Cáceres A. Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. 2009;10:319–32.
Chaaban S, Brouhard GJ. A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell. 2017;28:2924–31.
Brouhard GJ, Rice LM. Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol. 2018;19:451–63.
Janke C, Magiera MM. The tubulin code and its role in controlling microtubule properties and functions. Nat Rev Mol Cell Biol. 2020;21:307–26.
Inaba H, Matsuura K. Modulation of microtubule properties and functions by encapsulation of nanomaterials using a Tau-derived peptide. Bull Chem Soc Jpn. 2021;94:2100–12.
Hess H, Vogel V. Molecular shuttles based on motor proteins: active transport in synthetic environments. Rev Mol Biotechnol. 2001;82:67–85.
Goel A, Vogel V. Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat Nanotechnol. 2008;3:465–75.
Hawkins T, Mirigian M, Selcuk Yasar M, Ross JL. Mechanics of microtubules. J Biomech. 2010;43:23–30.
Agarwal A, Hess H. Biomolecular motors at the intersection of nanotechnology and polymer science. Prog Polym Sci. 2010;35:252–77.
Malcos JL, Hancock WO. Engineering tubulin: microtubule functionalization approaches for nanoscale device applications. Appl Microbiol Biotechnol. 2011;90:1–10.
Bachand GD, Spoerke ED, Stevens MJ. Microtubule-based nanomaterials: exploiting nature’s dynamic biopolymers. Biotechnol Bioeng. 2015;112:1065–73.
Hess H, Ross JL. Non-equilibrium assembly of microtubules: from molecules to autonomous chemical robots. Chem Soc Rev. 2017;46:5570–87.
LeGuennec M, Klena N, Aeschlimann G, Hamel V, Guichard P. Overview of the centriole architecture. Curr Opin Struct Biol. 2021;66:58–65.
Lüders J, Stearns T. Microtubule-organizing centres: a re-evaluation. Nat Rev Mol Cell Biol. 2007;8:161–7.
Ichikawa M, Bui KH. Microtubule inner proteins: a meshwork of luminal proteins stabilizing the doublet microtubule. BioEssays. 2018;40:1700209.
Stepanek L, Pigino G. Microtubule doublets are double-track railways for intraflagellar transport trains. Science. 2016;352:721–4.
Roll-Mecak A. The tubulin code in microtubule dynamics and information encoding. Dev Cell. 2020;54:7–20.
Uchida N, Kohata A, Okuro K, Cardellini A, Lionello C, Zizzi EA, et al. Reconstitution of microtubule into GTP-responsive nanocapsules. Nat Commun. 2022;13:5424.
Mandelkow E, Mandelkow E-M. Microtubules and microtubule-associated proteins. Curr Opin Cell Biol. 1995;7:72–81.
Goodson HV, Jonasson EM. Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol. 2018;10:a022608.
Bodakuntla S, Jijumon AS, Villablanca C, Gonzalez-Billault C, Janke C. Microtubule-associated proteins: structuring the cytoskeleton. Trends Cell Biol. 2019;29:804–19.
Cuveillier C, Boulan B, Ravanello C, Denarier E, Deloulme J-C, Gory-Fauré S, et al. Beyond neuronal microtubule stabilization: MAP6 and CRMPS, two converging stories. Front Mol Neurosci. 2021;14:665693.
Tsuji C, Dodding MP. Lumenal components of cytoplasmic microtubules. Biochem Soc Trans. 2022;50:1953–62.
Inaba H, Yamamoto T, Kabir AMR, Kakugo A, Sada K, Matsuura K. Molecular encapsulation inside microtubules based on Tau-derived peptides. Chem Eur J. 2018;24:14958–67.
Inaba H, Matsuura K. Encapsulation of nanomaterials inside microtubules by using a Tau-derived peptide. In: Inaba H, editor. Microtubules: methods and protocols. New York, NY: Springer; 2022. p. 243–60.
Inaba H. Development of dynamic bionanostructures based on peptides: molecular encapsulation inside microtubules and light-induced propulsion of microspheres. Chem Lett. 2023;52:459–68.
Inaba H, Kabir AMR, Kakugo A, Sada K, Matsuura K. Structural changes of microtubules by encapsulation of gold nanoparticles using a Tau-derived peptide. Chem Lett. 2022;51:348–51.
Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, et al. Stabilization of microtubules by encapsulation of the GFP using a Tau-derived peptide. Chem Commun. 2019;55:9072–5.
Inaba H, Sueki Y, Ichikawa M, Kabir AMR, Iwasaki T, Shigematsu H, et al. Generation of stable microtubule superstructures by binding of peptide-fused tetrameric proteins to inside and outside. Sci Adv. 2022;8:eabq3817.
Inaba H, Yamada M, Rashid MR, Kabir AMR, Kakugo A, Sada K, et al. Magnetic force-induced alignment of microtubules by encapsulation of CoPt nanoparticles using a Tau-derived peptide. Nano Lett. 2020;20:5251–8.
Inaba H, Nagata M, Miyake KJ, Kabir AMR, Kakugo A, Sada K, et al. Cyclic Tau-derived peptides for stabilization of microtubules. Polym J. 2020;52:1143–51.
Watari S, Inaba H, Tamura T, Kabir AMR, Kakugo A, Sada K, et al. Light-induced stabilization of microtubules by photo-crosslinking of a Tau-derived peptide. Chem Commun. 2022;58:9190–3.
Inaba H, Sakaguchi M, Watari S, Ogawa S, Kabir AMR, Kakugo A, et al. Reversible photocontrol of microtubule stability by spiropyran-conjugated Tau-derived peptides. ChemBioChem. 2023;24:e202200782.
Hagiya M, Konagaya A, Kobayashi S, Saito H, Murata S. Molecular robots with sensors and intelligence. Acc Chem Res. 2014;47:1681–90.
Murata S, Toyota T, Nomura SM, Nakakuki T, Kuzuya A. Molecular cybernetics: challenges toward cellular chemical artificial intelligence. Adv Funct Mater. 2022;32:2201866.
Sánchez S, Soler L, Katuri J. Chemically powered micro- and nanomotors. Angew Chem Int Ed. 2015;54:1414–44.
Wang H, Pumera M. Fabrication of micro/nanoscale motors. Chem Rev. 2015;115:8704–35.
Xu L, Mou F, Gong H, Luo M, Guan J. Light-driven micro/nanomotors: from fundamentals to applications. Chem Soc Rev. 2017;46:6905–26.
Villa K, Pumera M. Fuel-free light-driven micro/nanomachines: artificial active matter mimicking nature. Chem Soc Rev. 2019;48:4966–78.
Baroncini M, Silvi S, Credi A. Photo- and redox-driven artificial molecular motors. Chem Rev. 2020;120:200–68.
Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J. Smart materials for microrobots. Chem Rev. 2022;122:5365–403.
Upadhyaya A, van Oudenaarden A. Biomimetic systems for studying actin-based motility. Curr Biol. 2003;13:R734–44.
Cossart P, Lecuit M. Interactions of Listeria monocytogenes with mammalian cells during entry and actin-based movement: bacterial factors, cellular ligands and signaling. EMBO J. 1998;17:3797–806.
Karasawa S, Araki T, Yamamoto-Hino M, Miyawaki A. A Green-emitting fluorescent protein from Galaxeidae coral and its monomeric version for use in fluorescent labeling. J Biol Chem. 2003;278:34167–71.
Faivre D, Schüler D. Magnetotactic bacteria and magnetosomes. Chem Rev. 2008;108:4875–98.
Naik RR, Jones SE, Murray CJ, McAuliffe JC, Vaia RA, Stone MO. Peptide templates for nanoparticle synthesis derived from polymerase chain reaction-driven phage display. Adv Funct Mater. 2004;14:25–30.
Karsenti E. Self-organization in cell biology: a brief history. Nat Rev Mol Cell Biol. 2008;9:255–62.
Needleman D, Dogic Z. Active matter at the interface between materials science and cell biology. Nat Rev Mater. 2017;2:17048.
Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer. 2004;4:253–65.
Dumontet C, Jordan MA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat Rev Drug Discov. 2010;9:790–803.
Steinmetz MO, Prota AE. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol. 2018;28:776–92.
Borowiak M, Nahaboo W, Reynders M, Nekolla K, Jalinot P, Hasserodt J, et al. Photoswitchable inhibitors of microtubule dynamics optically control mitosis and cell death. Cell. 2015;162:403–11.
Müller-Deku A, Meiring JCM, Loy K, Kraus Y, Heise C, Bingham R, et al. Photoswitchable paclitaxel-based microtubule stabilisers allow optical control over the microtubule cytoskeleton. Nat Commun. 2020;11:4640.
Gao L, Meiring JCM, Heise C, Rai A, Müller-Deku A, Akhmanova A, et al. Photoswitchable epothilone-based microtubule stabilisers allow GFP-imaging-compatible, optical control over the microtubule cytoskeleton. Angew Chem Int Ed. 2022;61:e202114614.
Gao L, Meiring JCM, Varady A, Ruider IE, Heise C, Wranik M, et al. In vivo photocontrol of microtubule dynamics and integrity, migration and mitosis, by the potent GFP-imaging-compatible photoswitchable reagents SBTubA4P and SBTub2M. J Am Chem Soc. 2022;144:5614–28.
Kirchner S, Leistner A-L, Gödtel P, Seliwjorstow A, Weber S, Karcher J, et al. Hemipiperazines as peptide-derived molecular photoswitches with low-nanomolar cytotoxicity. Nat Commun. 2022;13:6066.
Keya JJ, Suzuki R, Kabir AMR, Inoue D, Asanuma H, Sada K, et al. DNA-assisted swarm control in a biomolecular motor system. Nat Commun. 2018;9:453.
Akter M, Keya JJ, Kayano K, Kabir AMR, Inoue D, Hess H, et al. Cooperative cargo transportation by a swarm of molecular machines. Sci Robot. 2022;7:eabm0677.
Ishii S, Akter M, Murayama K, Kabir AMR, Asanuma H, Sada K, et al. Kinesin motors driven microtubule swarming triggered by UV light. Polym J. 2022;54:1501–7.
Klajn R. Spiropyran-based dynamic materials. Chem Soc Rev. 2014;43:148–84.
Gao Y, Shi J, Yuan D, Xu B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat Commun. 2012;3:1033.
Tanaka A, Fukuoka Y, Morimoto Y, Honjo T, Koda D, Goto M, et al. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator. J Am Chem Soc. 2015;137:770–5.
Onogi S, Shigemitsu H, Yoshii T, Tanida T, Ikeda M, Kubota R, et al. In situ real-time imaging of self-sorted supramolecular nanofibres. Nat Chem. 2016;8:743–52.
Miki T, Nakai T, Hashimoto M, Kajiwara K, Tsutsumi H, Mihara H. Intracellular artificial supramolecules based on de novo designed Y15 peptides. Nat Commun. 2021;12:3412.
Yaguchi A, Oshikawa M, Watanabe G, Hiramatsu H, Uchida N, Hara C, et al. Efficient protein incorporation and release by a jigsaw-shaped self-assembling peptide hydrogel for injured brain regeneration. Nat Commun. 2021;12:6623.
Hauser CAE, Zhang S. Designer self-assembling peptide nanofiber biological materials. Chem Soc Rev. 2010;39:2780–90.
Zhao X, Pan F, Xu H, Yaseen M, Shan H, Hauser CAE, et al. Molecular self-assembly and applications of designer peptide amphiphiles. Chem Soc Rev. 2010;39:3480–98.
Sato K, Hendricks MP, Palmer LC, Stupp SI. Peptide supramolecular materials for therapeutics. Chem Soc Rev. 2018;47:7539–51.
Zhou Y, Li Q, Wu Y, Li X, Zhou Y, Wang Z, et al. Molecularly stimuli-responsive self-assembled peptide nanoparticles for targeted imaging and therapy. ACS Nano. 2023;17:8004–25.
Shigenaga A, Tsuji D, Nishioka N, Tsuda S, Itoh K, Otaka A. Synthesis of a stimulus-responsive processing device and its application to a nucleocytoplasmic shuttle peptide. ChemBioChem. 2007;8:1929–31.
Shigenaga A, Yamamoto J, Nishioka N, Otaka A. Enantioselective synthesis of stimulus-responsive amino acid via asymmetric α-amination of aldehyde. Tetrahedron. 2010;66:7367–72.
Furutani M, Uemura A, Shigenaga A, Komiya C, Otaka A, Matsuura K. A photoinduced growth system of peptide nanofibres addressed by DNA hybridization. Chem Commun. 2015;51:8020–2.
Inaba H, Uemura A, Morishita K, Kohiki T, Shigenaga A, Otaka A, et al. Light-induced propulsion of a giant liposome driven by peptide nanofibre growth. Sci Rep. 2018;8:6243.
Inaba H, Hatta K, Matsuura K. Directional propulsion of DNA microspheres based on light-induced asymmetric growth of peptide nanofibers. ACS Appl Bio Mater. 2021;4:5425–34.
Matsuura K, Yamashita T, Igami Y, Kimizuka N. ‘Nucleo-nanocages’: designed ternary oligodeoxyribonucleotides spontaneously form nanosized DNA cages. Chem Commun. 2003;9:376–7.
Matsuura K, Masumoto K, Igami Y, Fujioka T, Kimizuka N. In situ observation of spherical DNA assembly in water and the controlled release of bound dyes. Biomacromolecules. 2007;8:2726–32.
Inaba H, Yamamoto T, Iwasaki T, Kabir AMR, Kakugo A, Sada K, et al. Fluorescent Tau-derived peptide for monitoring microtubules in living cells. ACS Omega. 2019;4:11245–50.
Inaba H, Matsuura K. Live-cell fluorescence imaging of microtubules by using a Tau-derived peptide. In: Kim S-B, editor. Live cell imaging: methods and protocols. New York, NY: Springer; 2021. p. 169–79.
Inaba H, Oikawa K, Ishikawa K, Kodama Y, Matsuura K, Numata K. Binding of Tau-derived peptide-fused GFP to plant microtubules in Arabidopsis thaliana. PLoS ONE. 2023;18:e0286421.
Joshi FM, Viar GA, Pigino G, Drechsler H, Diez S. Fabrication of high aspect ratio gold nanowires within the microtubule lumen. Nano Lett. 2022;22:3659–67.
Nihongaki Y, Matsubayashi HT, Inoue T. A molecular trap inside microtubules probes luminal access by soluble proteins. Nat Chem Biol. 2021;17:888–95.
Keber FC, Loiseau E, Sanchez T, DeCamp SJ, Giomi L, Bowick MJ, et al. Topology and dynamics of active nematic vesicles. Science. 2014;345:1135–9.
Sato Y, Hiratsuka Y, Kawamata I, Murata S, Nomura SM. Micrometer-sized molecular robot changes its shape in response to signal molecules. Sci Robot. 2017;2:eaal3735.
Steinkühler J, Knorr RL, Zhao Z, Bhatia T, Bartelt SM, Wegner S, et al. Controlled division of cell-sized vesicles by low densities of membrane-bound proteins. Nat Commun. 2020;11:905.
Li C, Zhang X, Yang B, Wei F, Ren Y, Mu W, et al. Reversible deformation of artificial cell colonies triggered by actin polymerization for muscle behavior mimicry. Adv Mater. 2022;34:2204039.
Ganar KA, Honaker LW, Deshpande S. Shaping synthetic cells through cytoskeleton-condensate-membrane interactions. Curr Opin Colloid Interface Sci. 2021;54:101459.
Liang Y, Ogawa S, Inaba H, Matsuura K. Dramatic morphological changes in liposomes induced by peptide nanofibers reversibly polymerized and depolymerized by the photoisomerization of spiropyran. Front Mol Biosci. 2023;10:1137885.
Acknowledgements
I sincerely thank Prof. Kazunori Matsuura (Tottori University, Japan) and the colleagues and students of Matsuura Laboratory, especially those who are listed in the cited references, for their intensive efforts and achievements. I appreciate Dr. Arif Md. Rashedul Kabir, Prof. Kazuki Sada (Hokkaido University, Japan), and Prof. Akira Kakugo (Kyoto University, Japan) for their continuous support of the experiments, such as the motility assay of microtubules. I appreciate Dr. Takashi Iwasaki (Tottori University, Japan) for help with the protein expression and cell experiments. I appreciate Dr. Muneyoshi Ichikawa (Fudan University, China) and Prof. Tomoya Tsukazaki (Nara Institute of Science and Technology, Japan) for the EM measurements of microtubules and Dr. Hideki Shigematsu (Japan Synchrotron Radiation Research Institute, Japan) for the help with the cryo-EM measurements of microtubules. I appreciate Dr. Tomonori Tamura and Prof. Itaru Hamachi (Kyoto University, Japan) for the analysis of photoaffinity labeling. I appreciate Dr. Kazusato Oikawa and Prof. Keiji Numata (Kyoto University, Japan) for the analysis of protein expression in plants. I appreciate Prof. Akira Shigenaga (Fukuyama University, Japan) and Prof. Akira Otaka (Tokushima University, Japan) for providing photocleavable amino acids. This work was supported by KAKENHI (No. 17K14517 and 19K15699 for HI) from the Japan Society for the Promotion of Science (JSPS), ACT-X (JPMJAX2012 for HI) and the FOREST Program (JPMJFR2034 for HI) from the Japan Science and Technology Agency (JST), the Inamori Foundation, the Konica Minolta Science and Technology Foundation for Konica Minolta Imaging Science Encouragement Award, the Iketani Science and Technology Foundation, and the Kato Memorial Bioscience Foundation. I thank Edanz (https://jp.edanz.com/ac) for editing a draft of this manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The author declares no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Inaba, H. Construction of functional microtubules and artificial motile systems based on peptide design. Polym J 55, 1261–1274 (2023). https://doi.org/10.1038/s41428-023-00838-w
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41428-023-00838-w