Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Tough citric acid-modified cellulose-containing polymer composites with three components consisting of movable cross-links and hydrogen bonds

Abstract

Cellulose-containing polymer composites have advantages in addressing environmental issues because cellulose is a biobased filler that enhances the mechanical properties of the polymer composites. The enhanced mechanical properties reduce the amount of polymer waste generated. Although it is important to establish strategies for enhancing the mechanical properties of polymer composites, there are limited nanoscale studies on the polymer matrices. Usually, polymer composites focus on interactions between the matrices and fillers on the molecular scale and the distribution degrees of the fillers. The lack of structural studies is particularly obvious for polymer composites containing citric acid-modified cellulose. Herein, we study the structures of polymer composites with X-ray scattering measurements, thermal property measurements, and the finite element method. We reveal that an appropriate phase separation structure enables the formation of effective hydrogen bonds with high toughness values. We expect this report to provide material designs for polymer composites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Scheme 2
Scheme 3
Scheme 4
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. DiBenedetto AT. Tailoring of interfaces in glass fiber reinforced polymer composites: a review. Mater Sci Eng A. 2001;302:74–82.

    Article  Google Scholar 

  2. Chang TE, Kisliuk A, Rhodes SM, Brittain WJ, Sokolov AP. Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer. 2006;47:7740–6.

    Article  CAS  Google Scholar 

  3. Antich P, Vázquez A, Mondragon I, Bernal C. Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Compos Part A Appl Sci Manuf. 2006;37:139–50.

    Article  CAS  Google Scholar 

  4. Barzegari MR, Alemdar A, Zhang Y, Rodrigue D. Mechanical and rheological behavior of highly filled polystyrene with lignin. Polym Compos. 2012;33:353–61.

    Article  CAS  Google Scholar 

  5. Fujisawa S, Ikeuchi T, Takeuchi M, Saito T, Isogai A. Superior reinforcement effect of TEMPO-oxidized cellulose nanofibrils in polystyrene matrix: optical, thermal, and mechanical studies. Biomacromolecules. 2012;13:2188–94.

    Article  CAS  PubMed  Google Scholar 

  6. Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, et al. Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol. 2008;3:327–31.

    Article  CAS  PubMed  Google Scholar 

  7. Yamanobe T, Takeda H, Takada Y, Nagai D, Yoneyama M, Uehara H, et al. Structure and physical properties of poly(lactic acid) and cyclodextrin composite. J Incl Phenom Macrocycl Chem. 2019;93:117–26.

    Article  CAS  Google Scholar 

  8. Park J, Murayama S, Osaki M, Yamaguchi H, Harada A, Matsuba G, et al. Reinforced polystyrene through host-guest interactions using cyclodextrin as an additive. Eur. Polym J. 2020;134:109807.

    Article  CAS  Google Scholar 

  9. Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, et al. Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater. 2005;17:153–5.

    Article  CAS  Google Scholar 

  10. Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed. 2005;44:3358–93.

    Article  CAS  Google Scholar 

  11. Saito T, Kimura S, Nishiyama Y, Isogai A. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules. 2007;8:2485–91.

    Article  CAS  PubMed  Google Scholar 

  12. Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potential innovation in the electronics device industry. Adv Mater. 2008;20:1849–52.

    Article  CAS  Google Scholar 

  13. Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed. 2011;50:5438–66.

    Article  CAS  Google Scholar 

  14. Isogai A, Saito T, Fukuzumi H. TEMPO-oxidized cellulose nanofibers. Nanoscale. 2011;3:71–85.

    Article  CAS  PubMed  Google Scholar 

  15. Santmarti A, Teh JW, Lee KY. Transparent poly(methyl methacrylate) composites based on bacterial cellulose nanofiber networks with improved fracture resistance and impact strength. ACS Omega. 2019;4:9896–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yasim-Anuar TAT, Ariffin H, Norrrahim MNF, Hassan MA, Andou Y, Tsukegi T, et al. Well-dispersed cellulose nanofiber in low density polyethylene nanocomposite by liquid-Assisted extrusion. Polymers. 2020;12:927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Giese M, Blusch LK, Khan MK, Hamad WY, Maclachlan MJ. Responsive mesoporous photonic cellulose films by supramolecular cotemplating. Angew Chem Int Ed. 2014;53:8880–4.

    Article  CAS  Google Scholar 

  18. Siaueira G, Bras J, Dufresne A. Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules. 2009;10:425–32.

    Article  Google Scholar 

  19. Eichhorn SJ. Cellulose nanowhiskers: promising materials for advanced applications. Soft Matter. 2011;7:303–15.

    Article  CAS  Google Scholar 

  20. Yang X, Liu G, Peng L, Guo J, Tao L, Yuan J, et al. Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture. Adv. Funct. Mater. 2017;27:1703174.

    Article  Google Scholar 

  21. McKee JR, Appel EA, Seitsonen J, Kontturi E, Scherman OA, Ikkala O. Healable, stable and stiff hydrogels: combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv. Funct. Mater. 2014;24:2706–13.

    Article  CAS  Google Scholar 

  22. Erb RM, Sander JS, Grisch R, Studart AR. Self-shaping composites with programmable bioinspired microstructures. Nat Commun. 2013;4:1712.

    Article  PubMed  Google Scholar 

  23. Habibi Y, Lucia LA, Rojas OJ. Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev. 2010;110:3479–500.

    Article  CAS  PubMed  Google Scholar 

  24. Eyley S, Thielemans W. Surface modification of cellulose nanocrystals. Nanoscale. 2014;6:7764–79.

    Article  CAS  PubMed  Google Scholar 

  25. Araki J, Wada M, Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting. Langmuir. 2001;17:21–7.

    Article  CAS  Google Scholar 

  26. Harrisson S, Drisko GL, Malmström E, Hult A, Wooley KL. Hybrid rigid/soft and biologic/synthetic materials: polymers grafted onto cellulose microcrystals. Biomacromolecules. 2011;12:1214–23.

    Article  CAS  PubMed  Google Scholar 

  27. Bragd PL, Van Bekkum H, Besemer AC. TEMPO-mediated oxidation of polysaccharides: survey of methods and applications. Top Catal. 2004;27:49–66.

    Article  CAS  Google Scholar 

  28. Pérez S, Samain D. Structure and engineering of celluloses. Adv Carbohydr Chem Biochem. 2010;64:25–116.

    Article  PubMed  Google Scholar 

  29. Boufi S, Belgacem MN. Modified cellulose fibres for adsorption of dissolved organic solutes. Cellulose. 2006;13:81–94.

    Article  CAS  Google Scholar 

  30. Braun B, Dorgan JR. Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules. 2009;10:334–41.

    Article  CAS  PubMed  Google Scholar 

  31. Braun B, Dorgan JR, Hollingsworth LO. Supra-molecular ecobionanocomposites based on polylactide and cellulosic nanowhiskers: synthesis and properties. Biomacromolecules. 2012;13:2013–9.

    Article  CAS  PubMed  Google Scholar 

  32. Cui X, Honda T, Asoh TA, Uyama H. Cellulose modified by citric acid reinforced polypropylene resin as fillers. Carbohydr Polym. 2020;230:115662.

    Article  CAS  PubMed  Google Scholar 

  33. Tsuchiya H, Sinawang G, Asoh TA, Osaki M, Ikemoto Y, Higuchi Y, et al. Supramolecular biocomposite hydrogels formed by cellulose and host-guest polymers assisted by calcium ion complexes. Biomacromolecules. 2020;21:3936–44.

    Article  CAS  PubMed  Google Scholar 

  34. Sinawang G, Asoh T-A, Osaki M, Yamaguchi H, Harada A, Uyama H, et al. Citric acid-modified cellulose-based tough and self-healable composite formed by two kinds of noncovalent bonding. ACS Appl Polym Mater. 2020;2:2274–83.

    Article  CAS  Google Scholar 

  35. Tsuchiya H, Asaki Y, Sinawang G, Asoh TA, Osaki M, Park J, et al. Cellulose nanofiber composite polymeric materials with reversible and movable cross-links and evaluation of their mechanical properties. ACS Appl Polym Mater. 2022;4:403–12.

    Article  CAS  Google Scholar 

  36. Chutimasakul T, Uetake Y, Tantirungrotechai J, Asoh TA, Uyama H, Sakurai H. Size-controlled preparation of gold nanoparticles deposited on surface-fibrillated cellulose obtained by citric acid modification. ACS Omega. 2020;5:33206–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sijbesma RP, Beijer FH, Brunsveld L, Folmer BJB, Hirschberg JHKK, Lange RFM, et al. Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding. Science. 1997;278:1601–4.

    Article  CAS  PubMed  Google Scholar 

  38. Yanagisawa Y, Nan Y, Okuro K, Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science. 2018;359:72–6.

    Article  CAS  PubMed  Google Scholar 

  39. Huang X, Nakagawa S, Houjou H, Yoshie N. Insights into the role of hydrogen bonds on the mechanical properties of polymer networks. Macromolecules. 2021;54:4070–80.

    Article  CAS  Google Scholar 

  40. Uchida J, Soberats B, Gupta M, Kato T. Advanced functional liquid crystals. Adv. Mater. 2022;34:2109063.

    Article  CAS  Google Scholar 

  41. Lin Sun T, Kurokawa T, Kuroda S, Bin Ihsan A, Akasaki T, Sato K, et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nat Mater. 2013;12:932–7.

    Article  Google Scholar 

  42. Bose RK, Hohlbein N, Garcia SJ, Schmidt AM, Van Der Zwaag S. Connecting supramolecular bond lifetime and network mobility for scratch healing in poly(butyl acrylate) ionomers containing sodium, zinc and cobalt. Phys Chem Chem Phys. 2015;17:1697–704.

    Article  CAS  PubMed  Google Scholar 

  43. Rao YL, Chortos A, Pfattner R, Lissel F, Chiu YC, Feig V, et al. Stretchable self-healing polymeric dielectrics cross-linked through metal-ligand coordination. J Am Chem Soc. 2016;138:6020–7.

    Article  CAS  PubMed  Google Scholar 

  44. Nakahata M, Takashima Y, Harada A. Highly flexible, tough, and self-healing supramolecular polymeric materials using host-guest interaction. Macromol Rapid Commun. 2016;37:86–92.

    Article  CAS  PubMed  Google Scholar 

  45. Liu J, Tan CSY, Yu Z, Li N, Abell C, Scherman OA. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv Mater. 2017;29:1605325.

    Article  Google Scholar 

  46. Schmidt BVKJ, Barner-Kowollik C. Dynamic macromolecular material design—the versatility of cyclodextrin-based host–guest chemistry. Angew Chem Int Ed. 2017;56:8350–69.

    Article  CAS  Google Scholar 

  47. Park J, Murayama S, Osaki M, Yamaguchi H, Harada A, Matsuba G, et al. Extremely rapid self-healable and recyclable supramolecular materials through planetary ball milling and host–guest interactions. Adv Mater. 2020;32:2002008.

    Article  CAS  Google Scholar 

  48. Huang Z, Chen X, O’Neill SJK, Wu G, Whitaker DJ, Li J, et al. Highly compressible glass-like supramolecular polymer networks. Nat Mater. 2022;21:103–9.

    Article  CAS  PubMed  Google Scholar 

  49. Haque MA, Kurokawa T, Gong JP. Super tough double network hydrogels and their application as biomaterials. Polymer. 2012;53:1805–22.

    Article  CAS  Google Scholar 

  50. Matsuda T, Kawakami R, Namba R, Nakajima T, Gong JP. Mechanoresponsive self-growing hydrogels inspired by muscle training. Science. 2019;363:504–8.

    Article  CAS  PubMed  Google Scholar 

  51. Sakai T, Matsunaga T, Yamamoto Y, Ito C, Yoshida R, Suzuki S, et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules. 2008;41:5379–84. Il

    Article  CAS  Google Scholar 

  52. Fujiyabu T, Sakumichi N, Katashima T, Liu C, Mayumi K, Chung U, et al. Tri-branched gels: rubbery materials with the lowest branching factor approach the ideal elastic limit. Sci Adv. 2022;8:eabk0010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kawai Y, Park J, Ishii Y, Urakawa O, Murayama S, Ikura R, et al. Preparation of dual-cross network polymers by the knitting method and evaluation of their mechanical properties. NPG Asia Mater. 2022;14:32.

    Article  CAS  Google Scholar 

  54. Ikura R, Murayama S, Park J, Ikemoto Y, Osaki M, Yamaguchi H, et al. Fabrication and mechanical properties of knitted dissimilar polymeric materials with movable cross-links. Mol Syst Des Eng. 2022;7:733–45.

    Article  CAS  Google Scholar 

  55. Okumura Y, Ito K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485–7.

    Article  CAS  Google Scholar 

  56. Oku T, Furusho Y, Takata T. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew Chem Int Ed. 2004;43:966–9.

    Article  CAS  Google Scholar 

  57. Mayumi K, Ito K. Structure and dynamics of polyrotaxane and slide-ring materials. Polymer. 2010;51:959–67.

    Article  CAS  Google Scholar 

  58. Iijima K, Aoki D, Otsuka H, Takata T. Synthesis of rotaxane cross-linked polymers with supramolecular cross-linkers based on γ-CD and PTHF macromonomers: the effect of the macromonomer structure on the polymer properties. Polymer. 2017;128:392–6.

    Article  CAS  Google Scholar 

  59. Ikura R, Park J, Osaki M, Yamaguchi H, Harada A, Takashima Y. Supramolecular elastomers with movable cross-linkers showing high fracture energy based on stress dispersion. Macromolecules. 2019;52:6953–62.

    Article  CAS  Google Scholar 

  60. Sawada J, Aoki D, Sun Y, Nakajima K, Takata T. Effect of coexisting covalent cross-links on the properties of rotaxane-cross-linked polymers. ACS Appl Polym Mater. 2020;2:1061–4.

    Article  CAS  Google Scholar 

  61. Liu C, Morimoto N, Jiang L, Kawahara S, Noritomi T, Yokoyama H, et al. Tough hydrogels with rapid self-reinforcement. Science. 2021;372:1078–81.

    Article  CAS  PubMed  Google Scholar 

  62. Park J, Tamura H, Yamaguchi H, Harada A, Takashima Y. Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene. Polym J. 2022;54:1213–23.

    Article  CAS  Google Scholar 

  63. Kwon G, Kim M, Jung WH, Park S, Tam TTH, Oh SH, et al. Designing cooperative hydrogen bonding in polyethers with carboxylic acid pendants. Macromolecules. 2021;54:8478–87.

    Article  CAS  Google Scholar 

  64. Swatloski RP, Spear SK, Holbrey JD, Rogers RD. Dissolution of cellose with ionic liquids. J Am Chem Soc. 2002;124:4974–5.

    Article  CAS  PubMed  Google Scholar 

  65. Gupta KM, Hu Z, Jiang J. Molecular insight into cellulose regeneration from a cellulose/ionic liquid mixture: effects of water concentration and temperature. RSC Adv. 2013;3:4425–33.

    Article  CAS  Google Scholar 

  66. Gupta KM, Hu Z, Jiang J. Cellulose regeneration from a cellulose/ionic liquid mixture: the role of anti-solvents. RSC Adv. 2013;3:12794–801.

    Article  CAS  Google Scholar 

  67. Uetsuji Y, Yasuda S, Teramoto Y. Effect of fibre aspect ratio and aggregation on nonlinear material property of random cellulose reinforced composites: a multiscale computational study. Compos Struct. 2022;301:116201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by Scientific Research on Innovative Area JP19H05721 from MEXT of Japan, JST, the Core Research for Evolutional Science and Technology (CREST) program JPMJCR22L4 and COI-NEXT program JPMJPF2218, and Iketani Science and Technology Foundation (0341026-A). The authors would like to thank Dr. Kenichi Osaka (SPring-8, JASRI) for the synchrotron radiation scattering measurements. The synchrotron radiation experiments were performed at BL19B2 of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal No. 2022A1797). We thank Dr. Naoya Inazumi and the Analytical Instrumental Facility, Graduate School of Science, Osaka University, for supporting the NMR and FT-IR measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junsu Park, Hiroshi Uyama or Yoshinori Takashima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Asaki, Y., Fujiwara, Y. et al. Tough citric acid-modified cellulose-containing polymer composites with three components consisting of movable cross-links and hydrogen bonds. Polym J 55, 1151–1164 (2023). https://doi.org/10.1038/s41428-023-00823-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00823-3

Search

Quick links