Abstract
Supramolecular molecular amphiphiles that are photoresponsive have been intensively developed for a wide range of smart functional materials. As a photoswitch that displays high chemical and thermal stabilities, the azobenzene motif has been intensively incorporated into distinct soft materials to control properties and provide high temporal and high spatial resolution. However, only limited examples of molecular azobenzene amphiphiles (AAs) with chiral character have been reported with complicated synthetic manifold and photochemical studies. Herein, we design a novel molecular AA, AAPhe, with a simple molecular design and an L-amino acid motif. In addition to excellent photoresponsibility in organic media, AAPhe exhibits a high capacity for supramolecular transformation in aqueous media, as well as supramolecular chirality controlled by noninvasive photostimulation, as found in encouraging photochemical studies. Investigations of supramolecular behavior show that the supramolecular chiral structure induced by AAPhe assembles from microscopic to macroscopic length scales. The current design and studies of supramolecular assemblies of AAPhe provide us with fundamental concepts for constructing macroscopic functional materials with supramolecular chirality.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Nedeljković M, Sastre DE, Sundberg EJ. Bacterial flagellar filament: a supramolecular multifunctional nanostructure. Int J Mol Sci. 2021;22:7521. https://doi.org/10.3390/ijms22147521.
Luo Q, Dong Z, Hou C, Liu J. Protein-based supramolecular polymers: progress and prospect. Chem Commun. 2014;50:9997–10007. https://doi.org/10.1039/C4CC03143A.
van Dun S, Ottmann C, Milroy LG, Brunsveld L. Supramolecular chemistry targeting proteins. J Am Chem Soc. 2017;139:13960–8. https://doi.org/10.1021/jacs.7b01979.
Pollard TD, Borisy GG. Cellular motility driven by assembly and disassembly of actin filaments. Cell. 2003;112:453–65. https://doi.org/10.1016/S0092-8674(03)00120-X.
O’Donnell AD, Salimi S, Hart LR, Babra TS, Greenland BW, Hayes W. Applications of supramolecular polymer networks. React Funct Polym. 2022;172:105209. https://doi.org/10.1016/j.reactfunctpolym.2022.105209.
Aida T, Meijer EW, Stupp SI. Functional supramolecular polymers. Science. 2012;335:813–7. https://doi.org/10.1126/science.1205962.
Krieg E, Bastings MMC, Besenius P, Rybtchinski B. Supramolecular polymers in aqueous media. Chem Rev. 2016;116:2414–77. https://doi.org/10.1021/acs.chemrev.5b00369.
Lutz JF, Lehn JM, Meijer EW, Matyjaszewski K. From precision polymers to complex materials and systems. Nat Rev Mater. 2016;1:16024. https://doi.org/10.1038/natrevmats.2016.24.
Chen S, Costil R, Leung FKC, Feringa BL. Self‐assembly of photoresponsive molecular amphiphiles in aqueous media. Angew Chem Int Ed. 2021;60:11604–27. https://doi.org/10.1002/anie.202007693.
Lubbe AS, van Leeuwen T, Wezenberg SJ, Feringa BL. Designing dynamic functional molecular systems. Tetrahedron. 2017;73:4837–48. https://doi.org/10.1016/j.tet.2017.06.049.
Feringa BL. The art of building small: from molecular switches to motors (nobel lecture). Angew Chem Int Ed. 2017;56:11060–78. https://doi.org/10.1002/anie.201702979.
Volarić J, Szymanski W, Simeth NA, Feringa BL. Molecular photoswitches in aqueous environments. Chem Soc Rev. 2021;50:12377–449. https://doi.org/10.1039/D0CS00547A.
Costil R, Holzheimer M, Crespi S, Simeth NA, Feringa BL. Directing coupled motion with light: a key step toward machine-like function. Chem Rev. 2021;121:13213–37. https://doi.org/10.1021/acs.chemrev.1c00340.
Crespi S, Simeth NA, König B. Heteroaryl azo dyes as molecular photoswitches. Nat Rev Chem. 2019;3:133–46. https://doi.org/10.1038/s41570-019-0074-6.
Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev. 2012;41:1809–25. https://doi.org/10.1039/C1CS15179G.
Beharry AA, Woolley GA. Azobenzene photoswitches for biomolecules. Chem Soc Rev. 2011;40:4422–37. https://doi.org/10.1039/c1cs15023e.
Irie M, Fukaminato T, Matsuda K, Kobatake S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem Rev. 2014;114:12174–277. https://doi.org/10.1021/cr500249p.
Villarón D, Wezenberg SJ. Stiff‐stilbene photoswitches: from fundamental studies to emergent applications. Angew Chem Int Ed. 2020;59:13192–202. https://doi.org/10.1002/anie.202001031.
Baroncini M, Silvi S, Credi A. Photo- and redox-driven artificial molecular motors. Chem Rev. 2020;120:200–68. https://doi.org/10.1021/acs.chemrev.9b00291.
Kassem S, van Leeuwen T, Lubbe AS, Wilson MR, Feringa BL, Leigh DA. Artificial molecular motors. Chem Soc Rev. 2017;46:2592–621. https://doi.org/10.1039/C7CS00245A.
Poloni C, Stuart MCA, van der Meulen P, Szymanski W, Feringa BL. Light and heat control over secondary structure and amyloid-like fiber formation in an overcrowded-alkene-modified Trp zipper. Chem Sci. 2015;6:7311–8. https://doi.org/10.1039/C5SC02735G.
Xu F, Pfeifer L, Stuart MCA, Leung FKC, Feringa BL. Multi-modal control over the assembly of a molecular motor bola-amphiphile in water. Chem Commun. 2020;56:7451–4. https://doi.org/10.1039/d0cc02177f.
Chen S, Leung FKC, Stuart MCA, Wang C, Feringa BL. Dynamic assemblies of molecular motor amphiphiles control macroscopic foam properties. J Am Chem Soc. 2020;142:10163–72. https://doi.org/10.1021/jacs.0c03153.
van Dijken DJ, Chen J, Stuart MCA, Hou L, Feringa BL. Amphiphilic molecular motors for responsive aggregation in water. J Am Chem Soc. 2016;138:660–9. https://doi.org/10.1021/jacs.5b11318.
Leung FKC, van den Enk T, Kajitani T, Chen J, Stuart MCA, Kuipers J, et al. Supramolecular packing and macroscopic alignment controls actuation speed in macroscopic strings of molecular motor amphiphiles. J Am Chem Soc. 2018;140:17724–33. https://doi.org/10.1021/jacs.8b10778.
Chen S, Yang L, Leung FKC, Kajitani T, Stuart MCA, Fukushima T, et al. Photoactuating artificial muscles of motor amphiphiles as an extracellular matrix mimetic scaffold for mesenchymal stem cells. J Am Chem Soc. 2022;144:3543–53. https://doi.org/10.1021/jacs.1c12318.
Lubbe AS, Böhmer C, Tosi F, Szymanski W, Feringa BL. Molecular motors in aqueous environment. J Org Chem. 2018;83:11008–18. https://doi.org/10.1021/acs.joc.8b01627.
Lerch MM, Szymański W, Feringa BL. The (photo)chemistry of stenhouse photoswitches: guiding principles and system design. Chem Soc Rev. 2018;47:1910–37. https://doi.org/10.1039/C7CS00772H.
Petermayer C, Dube H. Indigoid photoswitches: visible light responsive molecular tools. Acc Chem Res. 2018;51:1153–63. https://doi.org/10.1021/acs.accounts.7b00638.
Chau AKH, Cheung LH, Leung FKC. Red-light controlled supramolecular co-assembly transformations of stiff stilbene and donor acceptor stenhouse adduct amphiphiles. Dyes Pigm. 2022;208:110807. https://doi.org/10.1016/j.dyepig.2022.110807.
Cheung LH, Kajitani T, Leung FKC. Visible-light controlled supramolecular transformations of donor-acceptor Stenhouse adducts amphiphiles at multiple length-scale. J Colloid Interface Sci. 2022;628:984–93. https://doi.org/10.1016/j.jcis.2022.08.034.
Kwan KSY, Lui YY, Kajitani T, Leung FKC. Aqueous supramolecular co-assembly of anionic and cationic photoresponsive stiff-stilbene amphiphiles. Macromol Rapid Commun. 2022;43:2200438. https://doi.org/10.1002/marc.202200438.
Chau MH, Stuart MCA, Leung FKC. Red-light driven photoisomerisation and supramolecular transformation of indigo amphiphiles in aqueous media. Colloids Surf A Physicochem Eng Asp. 2023;661:130939. https://doi.org/10.1016/j.colsurfa.2023.130939.
Goulet‐Hanssens A, Eisenreich F, Hecht S. Enlightening materials with photoswitches. Adv Mater. 2020;32:1905966. https://doi.org/10.1002/adma.201905966.
Zhang Q, Qu DH, Tian H. Photo‐regulated supramolecular polymers: shining beyond disassembly and reassembly. Adv Opt Mater. 2019;7:1900033. https://doi.org/10.1002/adom.201900033.
Zhang Q, Qu DH, Tian H, Feringa BL. Bottom-up: Can supramolecular tools deliver responsiveness from molecular motors to macroscopic materials. Matter. 2020;3:355–70. https://doi.org/10.1016/j.matt.2020.05.014.
Wang C, Wang S, Yang H, Xiang Y, Wang X, Bao C, et al. A light‐operated molecular cable car for gated ion transport. Angew Chem Int Ed. 2021;60:14836–40. https://doi.org/10.1002/anie.202102838.
Xu TY, Tong F, Xu H, Wang MQ, Tian H, Qu DH. Engineering photomechanical molecular crystals to achieve extraordinary expansion based on solid-state [2 + 2] photocycloaddition. J Am Chem Soc. 2022;144:6278–90. https://doi.org/10.1021/jacs.1c12485.
Yang H, Yi J, Pang S, Ye K, Ye Z, Duan Q, et al. A light‐driven molecular machine controls K + channel transport and induces cancer cell apoptosis. Angew Chem Int Ed. 2022;61:e202204605. https://doi.org/10.1002/anie.202204605.
Merino E. Synthesis of azobenzenes: the coloured pieces of molecular materials. Chem Soc Rev. 2011;40:3835–53. https://doi.org/10.1039/c0cs00183j.
Giles LW, Faul CFJ, Tabor RF. Azobenzene isomerization in condensed matter: lessons for the design of efficient light-responsive soft-matter systems. Mater Adv. 2021;2:4152–64. https://doi.org/10.1039/d1ma00340b.
Jerca FA, Jerca VV, Hoogenboom R. Advances and opportunities in the exciting world of azobenzenes. Nat Rev Chem. 2022;6:51–69. https://doi.org/10.1038/s41570-021-00334-w.
Cheng X, Miao T, Qian Y, Zhang Z, Zhang W, Zhu X. Supramolecular chirality in azobenzene-containing polymer system: Traditional postpolymerization self-assembly versus in situ supramolecular self-assembly strategy. Int J Mol Sci. 2020;21:6186. https://doi.org/10.3390/ijms21176186.
Zhang B, Feng Y, Feng W. Azobenzene-based solar thermal fuels: a review. Nano Micro Lett. 2022;14:138. https://doi.org/10.1007/s40820-022-00876-8.
Chevalier A, Renard PY, Romieu A. Azo-based fluorogenic probes for biosensing and bioimaging: recent advances and upcoming challenges. Chem Asian J. 2017;12:2008–28. https://doi.org/10.1002/asia.201700682.
Yagai S, Karatsu T, Kitamura A. Photocontrollable self-assembly. Chem Eur J. 2005;11:4054–63. https://doi.org/10.1002/chem.200401323.
Shin JY, Abbott NL. Using light to control dynamic surface tensions of aqueous solutions of water soluble surfactants. Langmuir. 1999;15:4404–10. https://doi.org/10.1021/la981477f.
Jiang J, Ma Y, Cui Z. Smart foams based on dual stimuli-responsive surfactant. Colloids Surf A Physicochem Eng Asp. 2017;513:287–91. https://doi.org/10.1016/j.colsurfa.2016.10.056.
Chen S, Wang C, Yin Y, Chen K. Synthesis of photo-responsive azobenzene molecules with different hydrophobic chain length for controlling foam stability. RSC Adv. 2016;6:60138–44. https://doi.org/10.1039/c6ra06459k.
Chen S, Zhang W, Wang C, Sun S. A recycled foam coloring approach based on the reversible photo-isomerization of an azobenzene cationic surfactant. Green Chem. 2016;18:3972–80. https://doi.org/10.1039/c6gc00711b.
Chen S, Zhang Y, Chen K, Yin Y, Wang C. Insight into a fast-phototuning azobenzene switch for sustainably tailoring the foam stability. ACS Appl Mater Interfaces. 2017;9:13778–84. https://doi.org/10.1021/acsami.7b02024.
Chen S, Fei L, Ge F, Liu J, Yin Y, Wang C. A versatile and recycled pigment foam coloring approach for natural and synthetic fibers with nearly-zero pollutant discharge. J Clean Prod. 2020;243:118504. https://doi.org/10.1016/j.jclepro.2019.118504.
Chen S, Fei L, Ge F, Wang C. Photoresponsive aqueous foams with controllable stability from nonionic azobenzene surfactants in multiple-component systems. Soft Matter. 2019;15:8313–9. https://doi.org/10.1039/c9sm01379b.
Li L, Jiang H, Messmore BW, Bull SR, Stupp SI. A torsional strain mechanism to tune pitch in supramolecular helices. Angew Chem Int Ed. 2007;46:5873–6. https://doi.org/10.1002/anie.200701328.
Fuentes E, Gerth M, Berrocal JA, Matera C, Gorostiza P, Voets IK, et al. An azobenzene-based single-component supramolecular polymer responsive to multiple stimuli in water. J Am Chem Soc. 2020;142:10069–78. https://doi.org/10.1021/jacs.0c02067.
Fuentes E, Gabaldón Y, Collado M, Dhiman S, Berrocal JA, Pujals S, et al. Supramolecular stability of benzene-1,3,5-tricarboxamide supramolecular polymers in biological media: beyond the stability-responsiveness trade-off. J Am Chem Soc. 2022;144:21196–205. https://doi.org/10.1021/jacs.2c08528.
Chen J, Leung FKC, Stuart MCA, Kajitani T, Fukushima T, van der Giessen E, et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat Chem. 2018;10:132–8. https://doi.org/10.1038/nchem.2887.
Leung FKC, Kajitani T, Stuart MCA, Fukushima T, Feringa BL. Dual‐controlled macroscopic motions in a supramolecular hierarchical assembly of motor amphiphiles. Angew Chem Int Ed. 2019;58:10985–9. https://doi.org/10.1002/anie.201905445.
Chen R, Gu H, Qiu F, Zhou Q, Li R, Ye Y, et al. A dual-responsive supramolecular amphiphile based on cucurbit[7]uril/butyrylcholine host–guest molecular recognition. Tetrahedron. 2016;72:5290–4. https://doi.org/10.1016/j.tet.2016.05.022.
Tantakitti F, Boekhoven J, Wang X, Kazantsev RV, Yu T, Li J, et al. Energy landscapes and functions of supramolecular systems. Nat Mater. 2016;15:469–76. https://doi.org/10.1038/nmat4538.
Stuart MCA, van de Pas JC, Engberts JBFN. The use of nile red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems. J Phys Org Chem. 2005;18:929–34. https://doi.org/10.1002/poc.919.
Zhang S, Greenfield MA, Mata A, Palmer LC, Bitton R, Mantei JR, et al. A self-assembly pathway to aligned monodomain gels. Nat Mater. 2010;9:594–601. https://doi.org/10.1038/nmat2778.
Acknowledgements
This work was supported financially by the Croucher Foundation (Croucher Innovation Award-2021), The Hong Kong Polytechnic University (W08A, ZVST), and the Hong Kong Special Administrative Region Government (InnoHK). We acknowledge the technical support from UCEA and ULS of PolyU.
Author information
Authors and Affiliations
Contributions
BBL performed all the synthesis and part of the characterization experiments for AAPhe. L-HC performed all characterizations of AAPhe in aqueous media, including TEM and SEM studies. FK-CL cowrote the paper and conceived and supervised the research. All authors discussed the results and commented on the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Cheung, LH., Liu, B.B. & Leung, F.KC. Photocontrolled chiral supramolecular assembly of azobenzene amphiphiles in aqueous media. Polym J (2023). https://doi.org/10.1038/s41428-023-00792-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41428-023-00792-7