Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of the side chain composition of mixed-charge polymers on pH-selective cell–membrane interactions

Abstract

Zwitterionic polymers are characterized by their antifouling ability due to their net-neutral charge and affinity for cancer cell surfaces. We developed six pH-responsive mixed-charge polymers and investigated the effect of their side chain hydrophobicity on their interaction with cancer cell membranes. The polymers were synthesized using [2-(methacryloyloxy)ethyl]trimethylammonium chloride, carboxylic acid monomers, and butyl methacrylate (BMA) as the neutral spacer moiety, and differences in hydrophobicity were created by altering the type of carboxylic acid monomer and ratio of the spacer. The surface charge of the polymers was designed to switch from net-neutral to positive in response to the weakly acidic tumor environment. This tuning occurred in a more cancer-like environment with the usage of a more hydrophobic anionic monomer and a higher ratio of BMA due to the weakening of electrostatic interactions. This trend was further confirmed by evaluation of the interaction between the polymers and heparin, an anionic polysaccharide that is used as a model for cancer cell surfaces. The affinity of the mixed-charge polymers for cells was then evaluated, and both the hydrophobicity and pH-responsive nature of these polymers led to pH-selective toxicity, which was assumed to be caused by the disruption of cell membrane integrity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhang J, Wu M, Peng P, Liu J, Lu J, Qian S, et al. “Self-Defensive” antifouling zwitterionic hydrogel coatings on polymeric substrates. ACS Appl Mater Interfaces. 2022;14:56097–109.

    Article  CAS  PubMed  Google Scholar 

  2. Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33:2373–87.

    Article  CAS  PubMed  Google Scholar 

  3. Alexander A, Ajazuddin, Khan J, Saraf S, Saraf S. Polyethylene glycol (PEG)–poly(N-isopropylacrylamide) (PNIPAAm) based thermosensitive injectable hydrogels for biomedical applications. Eur J Pharm Biopharm. 2014;88:575–85.

    Article  CAS  PubMed  Google Scholar 

  4. Jafari A, Rajabian N, Zhang G, Alaa Mohamed M, Lei P, Andreadis ST, et al. PEGylated amine-functionalized poly(ε-caprolactone) for the delivery of plasmid DNA. Materials. 2020;13:898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joseph A, Simo GM, Gao T, Alhindi N, Xu N, Graham DJ, et al. Surfactants influence polymer nanoparticle fate within the brain. Biomaterials. 2021;277:121086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Oishi M, Tamura A, Nakamura T, Nagasaki Y. A smart nanoprobe based on fluorescence-quenching PEGylated nanogels containing gold nanoparticles for monitoring the response to cancer therapy. Adv Funct Mater. 2009;19:827–34.

    Article  CAS  Google Scholar 

  7. Mishra S, Webster P, Davis ME. PEGylation significantly affects cellular uptake and intracellular trafficking of non-viral gene delivery particles. Eur J Cell Biol. 2004;83:97–111.

    Article  CAS  PubMed  Google Scholar 

  8. Zhao C, Deng H, Xu J, Li S, Zhong L, Shao L, et al. “Sheddable” PEG-lipid to balance the contradiction of PEGylation between long circulation and poor uptake. Nanoscale. 2016;8:10832–42.

    Article  CAS  PubMed  Google Scholar 

  9. Hatakeyama H, Akita H, Kogure K, Oishi M, Nagasaki Y, Kihira Y, et al. Development of a novel systemic gene delivery system for cancer therapy with a tumor-specific cleavable PEG-lipid. Gene Ther. 2007;14:68–77.

    Article  CAS  PubMed  Google Scholar 

  10. Hatakeyama H, Harashima H. PEG dilemma-nucleic acids delivery to cancers by controlling biodistribution and intracellular trafficking. Drug Deliv Syst. 2016;31:293–9.

    Article  CAS  Google Scholar 

  11. Garay RP, El-Gewely R, Armstrong JK, Garratty G, Richette P. Antibodies against polyethylene glycol in healthy subjects and in patients treated with PEG-conjugated agents. Expert Opin Drug Deliv. 2012;9:1319–23.

    Article  CAS  PubMed  Google Scholar 

  12. Chen Z. Surface hydration and antifouling activity of zwitterionic polymers. Langmuir. 2022;38:4483–9.

    Article  CAS  PubMed  Google Scholar 

  13. Erfani A, Seaberg J, Aichele CP, Ramsey JD. Interactions between biomolecules and zwitterionic moieties: a review. Biomacromolecules. 2020;21:2557–73.

    Article  CAS  PubMed  Google Scholar 

  14. Javan Nikkhah S, Vandichel M. Modeling polyzwitterion-based drug delivery platforms: a perspective of the current state-of-the-art and beyond. ACS Eng Au. 2022;2:274–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shao Q, Jiang S. Molecular understanding and design of zwitterionic materials. Adv Mater. 2015;27:15–26.

    Article  CAS  PubMed  Google Scholar 

  16. Thwaites DT, Anderson CM. The SLC36 family of proton-coupled amino acid transporters and their potential role in drug transport. Br J Pharm. 2011;164:1802–16.

    Article  CAS  Google Scholar 

  17. Yamada N, Honda Y, Takemoto H, Nomoto T, Matsui M, Tomoda K, et al. Engineering tumour cell-binding synthetic polymers with sensing dense transporters associated with aberrant glutamine metabolism. Sci Rep. 2017;7:6077.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fujii S, Takano S, Nakazawa K, Sakurai K. Impact of zwitterionic polymers on the tumor permeability of molecular bottlebrush-based nanoparticles. Biomacromolecules. 2022;23:2846–55.

    Article  CAS  PubMed  Google Scholar 

  19. Leiske MN, Mazrad Zihnil AI, Zelcak A, Wahi K, Davis TP, McCarroll JA, et al. Zwitterionic amino acid-derived polyacrylates as smart materials exhibiting cellular specificity and therapeutic activity. Biomacromolecules. 2022;23:2374–87.

  20. Yu X, Zou Y, Horte S, Janzen J, Kizhakkedathu JN, Brooks DE. Thermal reversal of polyvalent choline phosphate, a multivalent universal biomembrane adhesive. Biomacromolecules. 2013;14:2611–21.

    Article  CAS  PubMed  Google Scholar 

  21. Men Y, Peng S, Yang P, Jiang Q, Zhang Y, Shen B, et al. Biodegradable zwitterionic nanogels with long circulation for antitumor drug delivery. ACS Appl Mater Interfaces. 2018;10:23509–21.

    Article  CAS  PubMed  Google Scholar 

  22. Wu Z, Gan Z, Chen B, Chen F, Cao J, Luo X. pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers. Biomater Sci. 2019;7:3190–203.

    Article  CAS  PubMed  Google Scholar 

  23. Liu W, Li J, Qin Z, Yao M, Tian X, Zhang Z, et al. Zwitterionic unimolecular micelles with pH and temperature response: enhanced in vivo circulation stability and tumor therapeutic efficiency. Langmuir. 2020;36:3356–66.

    Article  CAS  PubMed  Google Scholar 

  24. Yu X, Yang X, Horte S, Kizhakkedathu JN, Brooks DE. A pH and thermosensitive choline phosphate-based delivery platform targeted to the acidic tumor microenvironment. Biomaterials. 2014;35:278–86.

    Article  CAS  PubMed  Google Scholar 

  25. Ranneh A-H, Takemoto H, Sakuma S, Awaad A, Nomoto T, Mochida Y, et al. An ethylenediamine-based switch to render the polyzwitterion cationic at tumorous pH for effective tumor accumulation of coated nanomaterials. Angew Chem Int Ed. 2018;57:5057–61.

    Article  CAS  Google Scholar 

  26. Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 2004;4:891–9.

    Article  CAS  PubMed  Google Scholar 

  27. Shih Y-J, Chang Y, Quemener D, Yang H-S, Jhong J-F, Ho F-M, et al. Hemocompatibility of polyampholyte copolymers with well-defined charge bias in human blood. Langmuir. 2014;30:6489–96.

    Article  CAS  PubMed  Google Scholar 

  28. Li H, Li X, Ji J. Mixed-charge bionanointerfaces: opposite charges work in harmony to meet the challenges in biomedical applications. WIREs Nanomed Nanobiotechnol. 2020;12:e1600.

    Article  Google Scholar 

  29. Bernards MT, Cheng G, Zhang Z, Chen S, Jiang S. Nonfouling polymer brushes via surface-initiated, two-component atom transfer radical polymerization. Macromolecules. 2008;41:4216–9.

    Article  CAS  Google Scholar 

  30. Jiang S, Cao Z. Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater. 2010;22:920–32.

    Article  CAS  PubMed  Google Scholar 

  31. Qin Z, Chen T, Teng W, Jin Q, Ji J. Mixed-charged zwitterionic polymeric micelles for tumor acidic environment responsive intracellular drug delivery. Langmuir. 2019;35:1242–8.

    Article  CAS  PubMed  Google Scholar 

  32. Fan F, Piao J-G, Zhao Y, Jin L, Li M, Wang Y, et al. Bioinspired membrane-disruptive macromolecules as drug-free therapeutics. ACS Appl Bio Mater. 2020;3:1267–75.

    Article  CAS  PubMed  Google Scholar 

  33. Fan F, Jin L, Yang L. pH-sensitive nanoparticles composed solely of membrane-disruptive macromolecules for treating pancreatic cancer. ACS Appl Mater Interfaces. 2021;13:12824–35.

    Article  CAS  PubMed  Google Scholar 

  34. Hiruta Y, Sawada K, Mizui Y, Citterio D. pH-responsive tunable mixed-charge polymers for pH-selective interaction with anionic biological constituents. Bull Chem Soc Jpn. 2020;93:547–52.

    Article  CAS  Google Scholar 

  35. Yang X, Hu K, Hu G, Shi D, Jiang Y, Hui L, et al. Long hydrophilic-and-cationic polymers: a different pathway toward preferential activity against bacterial over mammalian membranes. Biomacromolecules. 2014;15:3267–77.

    Article  CAS  PubMed  Google Scholar 

  36. Stuart MCA, van de Pas JC, Engberts JBFN. The use of Nile Red to monitor the aggregation behavior in ternary surfactant-water-organic solvent systems. J Phys Org Chem. 2005;18:929–34.

    Article  CAS  Google Scholar 

  37. Imai S, Hirai Y, Nagao C, Sawamoto M, Terashima T. Programmed self-assembly systems of amphiphilic random copolymers into size-controlled and thermoresponsive micelles in water. Macromolecules. 2018;51:398–409.

    Article  CAS  Google Scholar 

  38. Li Y, Wang Z, Wei Q, Luo M, Huang G, Sumer BD, et al. Non-covalent interactions in controlling pH-responsive behaviors of self-assembled nanosystems. Polym Chem. 2016;7:5949–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hoshino Y, Miyoshi T, Nakamoto M, Miura Y. Wide-range pKa tuning of proton imprinted nanoparticles for reversible protonation of target molecules via thermal stimuli. J Mater Chem B. 2017;5:9204–10.

    Article  CAS  PubMed  Google Scholar 

  40. Weers JG, Rathman JF, Axe FU, Crichlow CA, Foland LD, Scheuing DR, et al. Effect of the intramolecular charge separation distance on the solution properties of betaines and sulfobetaines. Langmuir. 1991;7:854–67.

    Article  CAS  Google Scholar 

  41. Zeng Z, Patel J, Lee S-H, McCallum M, Tyagi A, Yan M, et al. Synthetic polymer nanoparticle–polysaccharide interactions: a systematic study. J Am Chem Soc. 2012;134:2681–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lobner D. Comparison of the LDH and MTT assays for quantifying cell death: validity for neuronal apoptosis? J Neurosci Methods. 2000;96:147–52.

    Article  CAS  PubMed  Google Scholar 

  43. Cai J, Yue Y, Rui D, Zhang Y, Liu S, Wu C. Effect of chain length on cytotoxicity and endocytosis of cationic polymers. Macromolecules. 2011;44:2050–7.

    Article  CAS  Google Scholar 

  44. Murthy N, Chang I, Stayton P, Hoffman A. pH-sensitive hemolysis by random copolymers of alkyl acrylates and acrylic acid. Macromol Symp. 2001;172:49–56.

    Article  CAS  Google Scholar 

  45. Hong S, Leroueil PR, Janus EK, Peters JL, Kober M-M, Islam MT, et al. Interaction of polycationic polymers with supported lipid bilayers and cells: nanoscale hole formation and enhanced membrane permeability. Bioconjug Chem. 2006;17:728–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was partially supported by a Grant-in-Aid for Scientific Research for Research Activity-Career Scientists (grant no. 19K16339), a Grant-in Aid for Scientific Research (C) (grant no. 21K06495) from the Japan Society for the Promotion of Science (JSPS), and by the Program for the Advancement of Next Generation Research Projects (Type C) at Keio.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Hiruta.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakamura, Y., Nasu, M., Shindo, Y. et al. Effect of the side chain composition of mixed-charge polymers on pH-selective cell–membrane interactions. Polym J 55, 1179–1188 (2023). https://doi.org/10.1038/s41428-023-00774-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00774-9

Search

Quick links