Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Preparation of D-A copolymers based on dithiazologermole and germaindacenodithiazole as weak electron donor units

Abstract

Distannylated dithiazologermole and germaindacenodithiazole were copolymerized with dibrominated 2,1,3-benzothiadiazole and 4,7-di(thiazol-2-yl)-2,1,3-benzothiadiazole to produce four new donor-acceptor conjugated copolymers. The optical, electrochemical, and thermal properties of the copolymers were characterized, and intramolecular charge transfer was evaluated on the basis of solvatochromic behavior in the photoluminescence spectra. Density functional theory (DFT) calculations revealed that these thiazole-containing copolymers exhibited lower HOMO and LUMO energy levels than those of thiophene-based congeners, and this finding agreed with the experimental results. The intramolecular noncovalent S‒N and N‒H bond interactions and the effects of the bridging atom (C or Ge) on the HOMO and LUMO energy levels were also suggested by the DFT calculations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it

$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Yuan J, Zhang Y, Zhou L, Zhang G, Yip H-L, Lau T-K, et al. Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core. Joule. 2019;3:1140–51.

    Article  CAS  Google Scholar 

  2. Lu G, Usta H, Risko C, Wang L, Facchetti A, Ratner MA, et al. Synthesis, characterization, and transistor response of semiconducting silole polymers with substantial hole mobility and air stability. Experiment and theory. J Am Chem Soc. 2008;130:7670–85.

    Article  CAS  PubMed  Google Scholar 

  3. Guo X, Ortiz RP, Zheng Y, Hu Y, Noh YY, Baeg KJ, et al. Bithiophene-imide-based polymeric semiconductors for field-effect transistors: Synthesis, structure-property correlations, charge carrier polarity, and device stability. J Am Chem Soc. 2011;133:1405–18.

    Article  CAS  PubMed  Google Scholar 

  4. Yang J, Zhao Z, Geng H, Cheng C, Chen J, Sun Y, et al. Isoindigo-based polymers with small effective masses for high-mobility ambipolar field-effect transistors. Adv Mater. 2017;29:1702115.

    Article  Google Scholar 

  5. Sun H, Yu H, Shi Y, Yu J, Peng Z, Zhang X, et al. A narrow-bandgap n-type polymer with an acceptor-acceptor backbone enabling efficient all-polymer solar cells. Adv Mater. 2020;32:e2004183.

    Article  PubMed  Google Scholar 

  6. Sun W, Wang J, Shi Y, Wu Z, Tang Y, Feng K, et al. Terpolymer acceptors based on bithiophene imide for all-polymer solar cells. Dyes Pigm. 2021;186:109049.

    Article  CAS  Google Scholar 

  7. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dotz F, et al. A high-mobility electron-transporting polymer for printed transistors. Nature. 2009;457:679–86.

    Article  CAS  PubMed  Google Scholar 

  8. Wang C, Dong H, Hu W, Liu Y, Zhu D. Semiconducting pi-conjugated systems in field-effect transistors: A material odyssey of organic electronics. Chem Rev. 2012;112:2208–67.

    Article  CAS  PubMed  Google Scholar 

  9. Yi Z, Jiang Y, Xu L, Zhong C, Yang J, Wang Q, et al. Triple acceptors in a polymeric architecture for balanced ambipolar transistors and high-gain inverters. Adv Mater. 2018;30:e1801951.

    Article  PubMed  Google Scholar 

  10. Yang K, Li X, Huang Y-F, Bhatta RS, Liu J, Tsige M, et al. Investigation of hydrogen-bonding mediated molecular packing of diketopyrrolopyrrole based donor-acceptor oligomers in the solid state. Polymer. 2019;160:238–45.

    Article  CAS  Google Scholar 

  11. Panidi J, Paterson AF, Khim D, Fei Z, Han Y, Tsetseris L, et al. Remarkable enhancement of the hole mobility in several organic small-molecules, polymers, and small-molecule:Polymer blend transistors by simple admixing of the lewis acid p-dopant b(c6f5)3. Adv Sci. 2018;5:1700290.

    Article  Google Scholar 

  12. Paterson AF, Lin Y-H, Mottram AD, Fei Z, Niazi MR, Kirmani AR, et al. The impact of molecular p-doping on charge transport in high-mobility small-molecule/polymer blend organic transistors. Adv Electron Mater. 2018;4:1700464.

    Article  Google Scholar 

  13. Sun H, Guo X, Facchetti A. High-performance n-type polymer semiconductors: Applications, recent development, and challenges. Chem. 2020;6:1310–26.

    Article  CAS  Google Scholar 

  14. Usta H, Facchetti A, Marks TJ. N-channel semiconductor materials design for organic complementary circuits. Acc Chem Res. 2011;44:501–10.

    Article  CAS  PubMed  Google Scholar 

  15. Benincori T, Consonni V, Gramatica P, Pilati T, Rizzo S, Sannicolo F, et al. Steric control of conductivity in highly conjugated polythiophenes. Chem Mater. 2001;13:1665–73.

    Article  CAS  Google Scholar 

  16. Ohshita J. Conjugated oligomers and polymers containing dithienosilole units. Macromol Chem Phys. 2009;210:1360–70.

    Article  CAS  Google Scholar 

  17. Ohshita J, Nodono M, Kai H, Watanabe T, Kunai A, Komaguchi K, et al. Synthesis and optical, electrochemical, and electron-transporting properties of silicon-bridged bithiophenes. Organometallics. 1999;18:1453–9.

    Article  CAS  Google Scholar 

  18. Ohshita J, Nakamura M, Ooyama Y. Preparation and reactions of dichlorodithienogermoles. Organometallics. 2015;34:5609–14.

    Article  CAS  Google Scholar 

  19. Yabusaki Y, Ohshima N, Kondo H, Kusamoto T, Yamanoi Y, Nishihara H. Versatile synthesis of blue luminescent siloles and germoles and hydrogen-bond-assisted color alteration. Chem Eur J. 2010;16:5581–5.

    Article  CAS  PubMed  Google Scholar 

  20. Wang M, Ford M, Phan H, Coughlin J, Nguyen TQ, Bazan GC. Fluorine substitution influence on benzo[2,1,3]thiadiazole based polymers for field-effect transistor applications. Chem Commun. 2016;52:3207–10.

    Article  CAS  Google Scholar 

  21. Beaujuge PM, Pisula W, Tsao HN, Ellinger S. Mu¨ llen K, Reynolds J R. Tailoring structure-property relationships in dithienosilole-benzothiadiazole donor-acceptor copolymers. J Am Chem Soc. 2009;131:7514–5.

    Article  CAS  PubMed  Google Scholar 

  22. Fei Z, Kim JS, Smith J, Domingo EB, Anthopoulos TD, Stingelin N, et al. A low band gap co-polymer of dithienogermole and 2,1,3-benzothiadiazole by suzuki polycondensation and its application in transistor and photovoltaic cells. J. Mater. Chem. 2011;21:16257–63.

    Article  CAS  Google Scholar 

  23. Wong K-T, Chao T-C, Chi L-C, Chu Y-Y, Balaiah A, Chiu S-F, et al. Syntheses and structures of novel heteroarene-fused coplanar π-conjugated chromophores. Org Lett. 2006;8:5033–6.

    Article  CAS  PubMed  Google Scholar 

  24. Wang J-Y, Hau SK, Yip H-L, Davies JA, Chen K-S, Zhang Y, et al. Benzobis(silolothiophene)-based low bandgap polymers for efficient polymer solar cells. Chem Mater. 2010;23:765–7.

    Article  Google Scholar 

  25. Fei Z, Ashraf RS, Huang Z, Smith J, Kline RJ, D’Angelo P, et al. Germaindacenodithiophene based low band gap polymers for organic solar cells. Chem Commun. 2012;48:2955–7.

    Article  CAS  Google Scholar 

  26. Li Y, Meng H, Li Y, Pang B, Luo G, Huang J. Adjusting the energy levels and bandgaps of conjugated polymers via lewis acid–base reactions. N. J Chem 2018;42:18961–8.

    Article  CAS  Google Scholar 

  27. Zhang M, Guo X, Wang X, Wang H, Li Y. Synthesis and photovoltaic properties of d–a copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem Mater. 2011;23:4264–70.

    Article  CAS  Google Scholar 

  28. Yuan J, Ford MJ, Zhang Y, Dong H, Li Z, Li Y, et al. Toward thermal stable and high photovoltaic efficiency ternary conjugated copolymers: Influence of backbone fluorination and regioselectivity. Chem Mater. 2017;29:1758–68.

    Article  CAS  Google Scholar 

  29. Zhang Y, Liu Z, Shan T, Wang Y, Zhu L, Li T, et al. Tuning the molecular geometry and packing mode of non-fullerene acceptors by altering the bridge atoms towards efficient organic solar cells. Mater Chem Front. 2020;4:2462–71.

    Article  CAS  Google Scholar 

  30. Hou J, Chen H-Y, Zhang S, Li G, Yang Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc. 2008;130:16144–5.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang W, Smith J, Watkins SE, Gysel R, McGehee M, Salleo A, et al. Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J Am Chem Soc. 2010;132:11437–9.

    Article  CAS  PubMed  Google Scholar 

  32. Ashraf RS, Chen Z, Leem DS, Bronstein H, Zhang W, Schroeder B, et al. Silaindacenodithiophene semiconducting polymers for efficient solar cells and high-mobility ambipolar transistors. Chem Mater. 2010;23:768–70.

    Article  Google Scholar 

  33. Su HL, Sredojevic DN, Bronstein H, Marks TJ, Schroeder BC, Al-Hashimi M. Bithiazole: An intriguing electron-deficient building for plastic electronic applications. Macromol Rapid Commun. 2017;38:1600610.

    Article  Google Scholar 

  34. Kudla CJ, Dolfen D, Schottler KJ, Koenen J-M, Breusov D, Allard S, et al. Cyclopentadithiazole-based monomers and alternating copolymers. Macromolecules. 2010;43:7864–7.

    Article  CAS  Google Scholar 

  35. Barłóg M, Zhang X, Kulai I, Yang DS, Sredojevic DN, Sil A, et al. Indacenodithiazole-ladder-type bridged di(thiophene)-difluoro-benzothiadiazole-conjugated copolymers as ambipolar organic field-effect transistors. Chem Mater. 2019;31:9488–96.

    Article  Google Scholar 

  36. Chavez P, Ngov C, de Fremont P, Leveque P, Leclerc N. Synthesis by direct arylation of thiazole-derivatives: Regioisomer configurations-optical properties relationship investigation. J Org Chem. 2014;79:10179–88.

    Article  CAS  PubMed  Google Scholar 

  37. Shi Y, Guo H, Qin M, Wang Y, Zhao J, Sun H, et al. Imide-functionalized thiazole-based polymer semiconductors: Synthesis, structure–property correlations, charge carrier polarity, and thin-film transistor performance. Chem Mater. 2018;30:7988–8001.

    Article  CAS  Google Scholar 

  38. Teshima Y, Saito M, Fukuhara T, Mikie T, Komeyama K, Yoshida H, et al. Dithiazolylthienothiophene bisimide: A novel electron-deficient building unit for n-type semiconducting polymers. ACS Appl Mater Interfaces. 2019;11:23410–6.

    Article  CAS  PubMed  Google Scholar 

  39. Cao Y, Lei T, Yuan J, Wang J-Y, Pei J. Dithiazolyl-benzothiadiazole-containing polymer acceptors: Synthesis, characterization, and all-polymer solar cells. Polym. Chem. 2013;4:5228–36.

    Article  CAS  Google Scholar 

  40. Yamaguchi S, Tamo K. Theoretical study of the electronic structure of 2,2’-bisilole in comparison with 1,1’-bi-1,3-cyclopentadiene: Σ*-π* conjugation and a low-lying lumo as the origin of the unusual optical properties of 3,3’,4,4’-tetraphenyl-2,2’-bisilole. Bull Chem Soc Jpn. 1996;69:2327–34.

    Article  CAS  Google Scholar 

  41. Amb CM, Chen S, Graham KR, Subbiah J, Small CE, So F, et al. Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J Am Chem Soc. 2011;133:10062–5.

    Article  CAS  PubMed  Google Scholar 

  42. Gendron D, Morin P-O, Berrouard P, Allard N, Aïch BR, Garon CN, et al. Synthesis and photovoltaic properties of poly(dithieno[3,2-b:2′,3′-d]germole) derivatives. Macromolecules. 2011;44:7188–93.

  43. Ohshita J, Hwang Y-M, Mizumo T, Yoshida H, Ooyama Y, Harima Y, et al. Synthesis of dithienogermole-containing π-conjugated polymers and applications to photovoltaic cells. Organometallics. 2011;30:3233–6.

    Article  CAS  Google Scholar 

  44. Sun W, Adachi Y, Ohshita J. Synthesis of thiazole-condensed germoles with enhanced electron-deficient properties. Dyes Pigm. 2022;203:110333.

    Article  CAS  Google Scholar 

  45. Lee JY, Song KW, Song HJ, Moon DK. Synthesis and photovoltaic property of donor–acceptor type conjugated polymer containing carbazole and 4,7-dithiazolylbenzothiadiazole moiety utilized as a promising electron withdrawing unit. Synth Met. 2011;161:2434–40.

    Article  CAS  Google Scholar 

  46. Nehls BS, Asawapirom U, Fuldner S, Preis E, Farrell T, Scherf U. Semiconducting polymers via microwave-assisted Suzuki and Stille cross-coupling reactions. Adv Function Mater. 2004;14:352–6.

    Article  CAS  Google Scholar 

  47. Al-Hashimi M, Baklar MA, Colleaux F, Watkins SE, Anthopoulos TD, Stingelin N, et al. Synthesis, characterization, and field effect transistor properties of regioregular poly(3-alkyl-2,5-selenylenevinylene). Macromolecules. 2011;44:5194–9.

    Article  CAS  Google Scholar 

  48. Kotadiya NB, Mondal A, Blom PWM, Andrienko D, Wetzelaer GAH. A window to trap-free charge transport in organic semiconducting thin films. Nat Mater. 2019;18:1182–6.

    Article  CAS  PubMed  Google Scholar 

  49. Chen H, Wadsworth A, Ma C, Nanni A, Zhang W, Nikolka M, et al. The effect of ring expansion in thienobenzo[b]indacenodithiophene polymers for organic field-effect transistors. J Am Chem Soc. 2019;141:18806–13.

    Article  CAS  PubMed  Google Scholar 

  50. Hergue N, Mallet C, Savitha G, Allain M, Frere P, Roncali J. Facile synthesis of 3-alkoxy-4-cyanothiophenes as new building blocks for donor-acceptor conjugated systems. Org Lett. 2011;13:1762–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI (22H02132). WS thanks the China Scholarship Council (CSC) for financial support (scholarship no. 202008330340). The authors also thank Asai Germanium Research Institute Co., Ltd. for the gift of tetrachlorogermane.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joji Ohshita.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Adachi, Y. & Ohshita, J. Preparation of D-A copolymers based on dithiazologermole and germaindacenodithiazole as weak electron donor units. Polym J (2023). https://doi.org/10.1038/s41428-023-00771-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-023-00771-y

Search

Quick links