Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Water-soluble alginate–based adhesive: catechol modification and adhesion properties

Abstract

Catechol-modified alginate (AlgDA) samples with various catechol contents were synthesized and examined as adhesive materials. AlgDA exhibited high adhesive strength with mica and moderate adhesive strength with polymer resins, although this adhesiveness was not observed for sodium alginate. Moreover, AlgDA with a relatively low catechol content exhibited relatively high adhesive strength, unlike other catechol-modified polymer adhesives, presumably because the intramolecular aggregation of catechol units was suppressed in an aqueous solution. AlgDA residues were successfully removed from the used substrates by a simple water washing process. AlgDA is promising as a biobased adhesive material that contributes to a sustainable society.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang S, Lu A, Zhang L. Recent advances in regenerated cellulose materials. Prog Polym Sci. 2016;53:169–206.

    Article  CAS  Google Scholar 

  2. Kumar MNVA. Review of chitin and chitosan applications. React Funct Polym. 2000;46:1–27.

    Article  CAS  Google Scholar 

  3. Webber RE, Shull KR. Strain dependence of the viscoelastic properties of alginate hydrogels. Macromolecules. 2004;37:6153–60.

    Article  CAS  Google Scholar 

  4. Pawar SN, Edgar KJ. Alginate derivatization: a review of chemistry, properties and applications. Biomaterials. 2012;33:3279–305.

    Article  CAS  PubMed  Google Scholar 

  5. Donati I, Holtan S, Mørch YA, Borgogna M, Dentini M, Skjåk–Braek G. New hypothesis on the role of alternating sequences in calcium–alginate gels. Biomacromolecules. 2005;6:1031–40.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, Jiang G, Yu W, Liu D, Xu B. Microneedles fabricated from alginate and maltose for transdermal delivery of insulin on diabetic rats. Mater Sci Eng C. 2018;85:18–26.

    Article  CAS  Google Scholar 

  7. Zheng A, Cao L, Liu Y, Wu J, Zeng D, Hu L, et al. Biocompatible silk/calcium silicate/sodium alginate composite scaffolds for bone tissue engineering. Carbohydr Polym. 2018;199:244–55.

    Article  CAS  PubMed  Google Scholar 

  8. Hou J, Li C, Guan Y, Zhang Y, Zhu XX. Enzymatically crosslinked alginate hydrogels with improved adhesion properties. Polym Chem. 2015;6:2204–13.

    Article  CAS  Google Scholar 

  9. Bierhalz ACK, Silva MA, Kieckbusch TG. Natamycin release from alginate/pectin films for food packaging applications. J Food Eng. 2012;110:18–25.

    Article  CAS  Google Scholar 

  10. Laffleur F, Küppers P. Adhesive alginate for buccal delivery in aphthous stomatitis. Carbohydr Res. 2019;477:51–7.

    Article  CAS  PubMed  Google Scholar 

  11. Lee C, Shin J, Lee JS, Byun E, Ryu JH, Um SH, et al. Bioinspired, calcium-free alginate hydrogels with tunable physical and mechanical properties and improved biocompatibility. Biomacromolecules. 2013;14:2004–13.

    Article  CAS  PubMed  Google Scholar 

  12. Lee BP, Messersmith PB, Israelachvili JN, Waite JH. Mussel-inspired adhesives and coating. Annu Rev Mater Res. 2011;41:99–132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Aich P, An J, Yang B, Ko YH, Kim J, Murray J, et al. Self-assembled adhesive biomaterials formed by a genetically designed fusion protein. Chem Commun. 2018;54:12642–45.

    Article  CAS  Google Scholar 

  14. Hofman AH, van Hees IA, Yang J, Kamperman M. Bioinspired underwater adhesives by using the supramolecular toolbox. Adv Mater. 2018;30:1704640.

    Article  Google Scholar 

  15. Waite JH. Adhesion à la moule. Integr Comp Biol. 2002;42:1172–80.

    Article  CAS  PubMed  Google Scholar 

  16. Waite JH. Mussel adhesion-essential footwork. J Exp Biol. 2017;220:517–30.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Giuri D, Jacob KA, Ravarino P, Tomasini C. Boc-protection on l-DOPA: an easy way to promote underwater adhesion. Eur J Org Chem. 2020;46:7144–50.

    Article  Google Scholar 

  18. Zhao H, Sun C, Stewart RJ, Waite JH. Cement proteins of the tube-building polychaete phragmatopoma californica. J Biol Chem. 2005;280:42938–44.

    Article  CAS  PubMed  Google Scholar 

  19. Shin M, Shin JY, Kim K, Yang B, Han JW, Kim NK, et al. The position of lysine controls the catechol-mediated surface adhesion and cohesion in underwater mussel adhesion. J Colloid Interface Sci. 2020;563:168–76.

    Article  CAS  PubMed  Google Scholar 

  20. Yan S, Wang W, Li X, Yun W, Zhang K, Li G, et al. Preparation of mussel-inspired injectable hydrogels based on dual-functionalized alginate with improved adhesive, self-healing, and mechanical properties. J Mater Chem B. 2018;6:6377–90.

    Article  CAS  PubMed  Google Scholar 

  21. Lee H, Dellatore SM, Miller WM, Messersmith PB. Mussel-inspired surface chemistry for multifunctional coatings. Science. 2007;318:426–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lee SB, Gonzalez-Cabezas C, Kim KM, Kim KN, Kuroda K. Catechol-functionalized synthetic polymer as a dental adhesive to contaminated dental surface for a composite restoration. Biomacromolecules. 2015;16:2265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng B, Yu J, Arisawa T, Hayashi K, Richardson JJ, Shibuta Y, et al. Ultrastrong underwater adhesion on diverse substrates using non-canonical phenolic groups. Nat Commun. 2022;13:1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Duarte AP, Coelho JF, Bordado JC, Cidade MT, Gil MH. Surgical adhesives: systematic review of the main types and development forecast. Prog Polym Sci. 2012;37:1031–50.

    Article  CAS  Google Scholar 

  25. Du X, Hou Y, Wu L, Li S, Yu A, Kong D, et al. An anti-infective hydrogel adhesive with non-swelling and robust mechanical properties for sutureless wound closure. J Mater Chem B. 2020;8:5682–93.

    Article  CAS  PubMed  Google Scholar 

  26. Cholewinsk A, Yang FK, Zhao B. Underwater contact behavior of alginate and catechol-conjugated alginate hydrogel beads. Langmuir. 2017;33:8353–61.

    Article  Google Scholar 

  27. Suzuki F, Sato E, Matsumoto A. Thermal degradation behavior of polymers containing a tert-butoxycarbonyl group in the side chain and application to dismantlable adhesion materials. J Adhesion Soc Jpn. 2017;53:4–10.

    Article  CAS  Google Scholar 

  28. Sato E, Iki S, Yamanishi K, Horibe H, Matsumoto A. Dismantlable adhesion properties of reactive acrylic copolymers resulting from cross-linking and gas evolution. J Adhesion. 2017;93:811–22.

    Article  CAS  Google Scholar 

  29. Sogawa H, Ifuku N, Numata K. 3,4-Dihydroxyphenylalanine (DOPA)-containing silk fibroin: its enzymatic synthesis and adhesion properties. Sci Eng. 2019;5:5644–651.

    CAS  Google Scholar 

  30. Burke KA, Roberts DC, Kaplan DL. Silk fibroin aqueous-based adhesives inspired by mussel adhesive proteins. Biomacromolecules. 2016;17:237–45.

    Article  CAS  PubMed  Google Scholar 

  31. Lv C, Li L, Jiao Z, Yan H, Wang Z, Wu Z, et al. Improved hemostatic effects by Fe3+ modified biomimetic PLLA cotton-like mat via sodium alginate grafted with dopamine. Bioact Mater. 2021;6:2346–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu Y, Su X, Lei Y, Wang Y. A novel anti-calcification method for bioprosthetic heart valves using dopamine-modified alginate. Polym Bull. 2019;76:1423–34.

    Article  CAS  Google Scholar 

  33. Zhang S, Wang R, Wang G. Impact of dopamine oxidation on dopamineric neurodegeneration. ACS Chem Neurosci. 2019;10:945–53.

    Article  CAS  PubMed  Google Scholar 

  34. Flores-Hernánedes CG, Cornejo-Villegas MDLA, Moreno-Martell A, Del Real A. Synthesis of a biodegradable polymer of poly (sodium alginate/ethyl acetate). Polymers. 2021;13:504.

    Article  Google Scholar 

  35. Pereira R, Tojeira A, Vas DC, Mendes A, Bártolo P. Preparation and characterization of films based on alginate and aloe vera. Int J Polym Anal Charact. 2011;16:449–64.

    Article  CAS  Google Scholar 

  36. Yoon J, Oh DX, Jo C, Lee J, Hwang DS. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys Chem Chem Phys. 2014;16:25628–35.

    Article  CAS  PubMed  Google Scholar 

  37. Yu M, Deming TJ. Synthetic polypeptide mimics of marine adhesives. Macromolecules. 1998;31:4739–45.

    Article  CAS  PubMed  Google Scholar 

  38. Yamada K, Chen T, Kumar G, Vesnovsky O, Topoleski LDT, Payne GF. Chitosan based water-resistant adhesive. Analogy to mussel glue. Biomacromolecules. 2000;1:252–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Takashi Miyata, Prof. Akifumi Kawamura and Ms. Chika Hajime (Kansai University, Japan) for letting us use a tensile testing machine and Prof. Hiroshi Tamura, Prof. Tetsuya Furuike and Mr. Taisei Iwasa (Kansai University, Japan) for letting us use an SEC instrument.

Funding

This research was financially supported by JSPS KAKENHI Grant Number JP22H04565 (Grant-in-Aid for Scientific Research on Innovative Areas of “Aquatic Functional Materials”, Area No. 6104), Shorai Foundation for Science and Technology, and Yashima Environment Technology Foundation. This research used computational resources under the Collaborative Research Program for Young•Women Scientists provided by the Academic Center for Computing and Media Studies, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiromitsu Sogawa or Fumio Sanda.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inata, S., Sogawa, H. & Sanda, F. Water-soluble alginate–based adhesive: catechol modification and adhesion properties. Polym J 55, 785–795 (2023). https://doi.org/10.1038/s41428-023-00770-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00770-z

Search

Quick links