Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Conformational relaxation of ethylene-propylene-diene terpolymer at a solid interface

Abstract

The relaxation of the local conformation of ethylene-propylene-diene terpolymer (EPDM) rubber at the quartz interface was examined by sum frequency generation (SFG) spectroscopy in conjunction with all-atom molecular dynamics (MD) simulations. At room temperature, SFG peaks due to the CH symmetric stretching vibration of methyl (CH3s) and methylene (CH2s) groups were observed, and the intensity was stronger for CH3s than for CH2s. The CH3s to CH2s intensity ratio was reversed during the heating process, meaning that the local conformation of EPDM at the interface changed. MD simulations revealed that the fraction of ethylene units in the trans conformation on the substrate surface decreased once the temperature was greater the interfacial glass transition temperature (Tg), which was determined based on the temperature dependence of the mass density. Moreover, the temperature-induced change in the fraction of propylene units in the trans conformation was less remarkable than that of ethylene units. Both SFG spectroscopy and MD simulation confirmed that the Tg was higher in the interfacial region than in the bulk.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ravishankar PS. Treatise on EPDM. Rubber Chem Technol. 2012;85:327–49.

    Article  CAS  Google Scholar 

  2. Kresge EN. Science and serendipity in polyolefin elastomer development. Rubber Chem Technol. 2010;83:227–34.

    Article  CAS  Google Scholar 

  3. Ismail H, Pasbakhsh P, Fauzi MNA, Abu, Bakar A. Morphological, thermal and tensile properties of halloysite nanotubes filled ethylene propylene diene monomer (EPDM) nanocomposites. Polym Test. 2008;27:841–50.

    Article  CAS  Google Scholar 

  4. Candau N, Oguz O, Peuvrel-Disdier E, Bouvard JL, Pradille C, Billon N. Strain-induced network chains damage in carbon black filled EPDM. Polymer. 2019;175:329–38.

    Article  CAS  Google Scholar 

  5. Nakanishi Y, Mita K, Yamamoto K, Ichino K, Takenaka M. Effects of mixing process on spatial distribution and coexistence of sulfur and zinc in vulcanized EPDM rubber. Polymer. 2021;218:123486.

    Article  CAS  Google Scholar 

  6. Das A, De D, Naskar N, Chandra Debnath S. Effect of vulcanization technique on the physical properties of silica‐filled EPDM rubber. J Appl Polym Sci. 2006;99:1132–9.

    Article  CAS  Google Scholar 

  7. Ahmadi SJ, Huang Y, Li W. Fabrication and physical properties of EPDM–organoclay nanocomposites. Compos Sci Technol. 2005;65:1069–76.

    Article  CAS  Google Scholar 

  8. Öksüz M, Eroglu M, Yıldırım H. Effect of talc on the properties of polypropylene/ethylene/propylene/diene terpolymer blends. J Appl Polym Sci. 2006;101:3033–9.

    Article  Google Scholar 

  9. Wang H, Wang H, Xu J, Du X, Yang S, Wang H. Thermo-driven self-healable organic/inorganic nanohybrid polyurethane film with excellent mechanical properties. Polym J. 2022;54:293–303.

    Article  CAS  Google Scholar 

  10. Ciprari D, Jacob K, Tannenbaum R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules. 2006;39:6565–73.

    Article  CAS  Google Scholar 

  11. Li B, Zhang S, Andre JS, Chen Z. Relaxation behavior of polymer thin films: effects of free surface, buried interface, and geometrical confinement. Prog Polym Sci. 2021;120:101431.

    Article  CAS  Google Scholar 

  12. Uematsu H, Nishimura S, Yamaguchi A, Yamane M, Ozaki Y. Growth of polypropylene crystals in the vicinity of carbon fibers and improvement of their interfacial shear strength. Polym J. 2022;54:667–77.

    Article  CAS  Google Scholar 

  13. Morimune-Moriya S. Polymer/nanocarbon nanocomposites with enhanced properties. Polym J. 2022;54:977–84.

    Article  CAS  Google Scholar 

  14. Twiss D. The theory of vulcanisation. J Soc Chem Ind. 1925;44:106–8.

    CAS  Google Scholar 

  15. Pliskin I, Tokita N. Bound rubber in elastomers: analysis of elastomer-filler interaction and its effect on viscosity and modulus of composite systems. J Appl Polym Sci. 1972;16:473–92.

    Article  CAS  Google Scholar 

  16. Griffin PJ, Bocharova V, Middleton LR, Composto RJ, Clarke N, Schweizer KS, et al. Influence of the bound polymer layer on nanoparticle diffusion in polymer melts. ACS Macro Lett. 2016;5:1141–5.

    Article  CAS  PubMed  Google Scholar 

  17. Kaufman S, Slichter WP, Davis DD. Nuclear magnetic resonance study of rubber−carbon black interactions. J Polym Sci A-2. 1971;9:829–39.

    Article  CAS  Google Scholar 

  18. Nishi T. Effect of solvent and carbon black species on the rubber-carbon black interactions studied by pulsed NMR. J Polym Sci, Polym Phys Ed. 1974;12:685–93.

    Article  CAS  Google Scholar 

  19. Litvinov VM, Steeman PAM. EPDM− carbon black interactions and the reinforcement mechanisms, as studied by low-resolution 1H NMR. Macromolecules. 1999;32:8476–90.

    Article  CAS  Google Scholar 

  20. Litvinov VM, Orza RA, Klüppel M, van Duin M, Magusin PCMM. Rubber–filler interactions and network structure in relation to stress–strain behavior of vulcanized, carbon black filled EPDM. Macromolecules. 2011;44:4887–900.

    Article  CAS  Google Scholar 

  21. Nguyen HK, Sugimoto S, Konomi A, Inutsuka M, Kawaguchi D, Tanaka K. Dynamics gradient of polymer chains near a solid interface. ACS Macro Lett. 2019;8:1006–11.

    Article  CAS  PubMed  Google Scholar 

  22. Richter D, Kruteva M. Polymer dynamics under confinement. Soft Matter. 2019;15:7316–49.

    Article  CAS  PubMed  Google Scholar 

  23. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. The effect of interfacial dynamics on the bulk mechanical properties of rubber composites. Polym J. 2020;52:217–23.

    Article  CAS  Google Scholar 

  24. Fernández-de-Alba C, Jimenez AM, Abbasi M, Kumar SK, Saalwächter K, Baeza GP. On the immobilized polymer fraction in attractive nanocomposites: Tg gradient versus interfacial layer. Macromolecules. 2021;54:10289–99.

    Article  Google Scholar 

  25. Kimura T, Hayashi M. Exploring the effects of bound rubber phase on the physical properties of nano-silica composites with a vitrimer-like bond exchangeable matrix. Polym J. 2022;54:1307–19.

    Article  CAS  Google Scholar 

  26. Scheutjens JMHM, Fleer GJ. Statistical theory of the adsorption of interacting chain molecules. 2. train, loop, and tail size distribution. J Phys Chem A. 1980;84:178–90.

    CAS  Google Scholar 

  27. Marzolin C, Auroy P, Deruelle M, Folkers JP, Léger L, Menelle A. Neutron reflectometry study of the segment-density profiles in end-grafted and irreversibly adsorbed layers of polymer in good solvents. Macromolecules. 2001;34:8694–700.

    Article  CAS  Google Scholar 

  28. Behbahani AF, Rissanou A, Kritikos G, Doxastakis M, Burkhart C, Polińska P, et al. Conformations and dynamics of polymer chains in cis and trans polybutadiene/silica nanocomposites through atomistic simulations: from the unentangled to the entangled regime. Macromolecules. 2020;53:6173–89.

    Article  CAS  Google Scholar 

  29. Inutsuka M, Watanabe H, Aoyagi M, Yamada NL, Tanaka C, Ikehara T, et al. Effect of oligomer segregation on the aggregation state and strength at the polystyrene/substrate interface. ACS Macro Lett. 2022;11:504–9.

    Article  CAS  PubMed  Google Scholar 

  30. Yavitt BM, Salatto D, Zhou Y, Huang Z, Endoh M, Wiegart L, et al. Collective nanoparticle dynamics associated with bridging network formation in model polymer nanocomposites. ACS Nano. 2021;15:11501–13.

    Article  CAS  PubMed  Google Scholar 

  31. Salatto D, Carrillo JMY, Endoh MK, Taniguchi T, Yavitt BM, Masui T, et al. Structural and dynamical roles of bound polymer chains in rubber reinforcement. Macromolecules. 2021;54:11032–46.

    Article  CAS  Google Scholar 

  32. Shen YR. Fundamentals of sum-frequency spectroscopy. Cambridge: Cambridge University Press; 2016.

  33. Zhang C. Sum frequency generation vibrational spectroscopy for characterization of buried polymer interfaces. Appl Spectrosc. 2017;71:1717–49.

    Article  CAS  PubMed  Google Scholar 

  34. Aoki M, Shundo A, Okamoto K, Ganbe T, Tanaka K. Segregation of an amine component in a model epoxy resin at a copper interface. Polym J. 2019;51:359–63.

    Article  CAS  Google Scholar 

  35. Harada R, Kawaguchi D, Yamamoto S, Tanaka K. Change in local conformation of polymer chains at film surface attached to solid surface. Soft Matter. 2022;18:3304–07.

    Article  CAS  PubMed  Google Scholar 

  36. Abe T, Shimada H, Hoshino T, Kawaguchi D, Tanaka K. Sum frequency generation imaging for semi-crystalline polymers. Polym J. 2022;54:679–85.

    Article  CAS  Google Scholar 

  37. Tsuruta H, Fujii Y, Kai N, Kataoka H, Ishizone T, Doi M, et al. Local conformation and relaxation of polystyrene at substrate interface. Macromolecules. 2012;45:4643–49.

    Article  CAS  Google Scholar 

  38. Inutsuka M, Horinouchi A, Tanaka K. Aggregation states of polymers at hydrophobic and hydrophilic solid interfaces. ACS Macro Lett. 2015;4:1174–8.

    Article  CAS  PubMed  Google Scholar 

  39. Baschnagel J, Binder K, Doruker P, Gusev AA, Hahn O, Kremer K, et al. Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives. Adv Polym Sci. 2000;152:41–156.

    Article  CAS  Google Scholar 

  40. Jayaraman A. 100th anniversary of macromolecular science viewpoint: modeling and simulation of macromolecules with hydrogen bonds: challenges, successes, and opportunities. ACS Macro Lett. 2020;9:656–65.

    Article  CAS  PubMed  Google Scholar 

  41. Brunello G, Lee SG, Jang SS, Qi Y. A molecular dynamics simulation study of hydrated sulfonated poly(ether ether ketone) for application to polymer electrolyte membrane fuel cells: effect of water content. J Renew Sustain Energy. 2009;1:033101.

    Article  Google Scholar 

  42. Negash S, Tatek YB, Tsige M. Effect of tacticity on the structure and glass transition temperature of polystyrene adsorbed onto solid surfaces. J Chem Phys. 2018;148:134705.

    Article  PubMed  Google Scholar 

  43. Yamamoto S, Kuwahara R, Aoki M, Shundo A, Tanaka K. Molecular events for an epoxy-amine system at a copper interface. ACS Appl Polym Mater. 2020;2:1474–81.

    Article  CAS  Google Scholar 

  44. Miyata T, Kawagoe Y, Okabe T, Jinnai H. Morphologies of polymer chains adsorbed on inorganic nanoparticles in a polymer composite as revealed by atomic-resolution electron microscopy. Polym J. 2022;54:1297–306.

    Article  CAS  Google Scholar 

  45. Yamamoto K, Kawaguchi D, Sasahara K, Inutsuka M, Yamamoto S, Uchida K, et al. Aggregation states of poly (4-methylpentene-1) at a solid interface. Polym J. 2019;51:247–55.

    Article  CAS  Google Scholar 

  46. Uchida K, Mita K, Yamamoto S, Tanaka K. Local orientation of polystyrene at the interface with poly(methyl methacrylate) in block copolymer. ACS Macro Lett. 2020;9:1576–81.

    Article  CAS  PubMed  Google Scholar 

  47. Luo Y, Pang AP, Zhu P, Wang D, Lu X. Demonstrating the interfacial polymer thermal transition from coil-to-globule to coil-to-stretch under shear flow using SFG and MD simulation. J Phys Chem Lett. 2022;13:1617–27.

    Article  CAS  PubMed  Google Scholar 

  48. Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compounds. J Phys Chem B. 1998;102:7338–64.

    Article  CAS  Google Scholar 

  49. Sun H, Jin Z, Yang C, Akkermans RL, Robertson SH, Spenley NA, et al. COMPASS II: extended coverage for polymer and drug-like molecule databases. J Mol Model. 2016;22:47.

    Article  PubMed  Google Scholar 

  50. Opdahl A, Phillips RA, Somorjai GA. Surface segregation of methyl side branches monitored by sum frequency generation (SFG) vibrational spectroscopy for a series of random poly (ethylene-co-propylene) copolymers. J Phys Chem B. 2002;106:5212–20.

    Article  CAS  Google Scholar 

  51. Weber J, Balgar T, Hasselbrink E. Conformational disorder in alkylsiloxane monolayers at elevated temperatures. J Chem Phys. 2013;139:244902.

    Article  PubMed  Google Scholar 

  52. Sugimoto S, Inutsuka M, Kawaguchi D, Tanaka K. Reorientation kinetics of local conformation of polyisoprene at substrate interface. ACS Macro Lett. 2018;7:85–9.

    Article  CAS  PubMed  Google Scholar 

  53. Zuo B, Inutsuka M, Kawaguchi D, Wang X, Tanaka K. Conformational relaxation of poly (styrene-co-butadiene) chains at substrate interface in spin-coated and solvent-cast films. Macromolecules. 2018;51:2180–6.

    Article  CAS  Google Scholar 

  54. Soni NJ, Lin PH, Khare R. Effect of cross-linker length on the thermal and volumetric properties of cross-linked epoxy networks: a molecular simulation study. Polymer. 2012;53:1015–19.

    Article  CAS  Google Scholar 

  55. Messmer MC, Conboy JC, Richmond GL. Observation of molecular ordering at the liquid-liquid interface by resonant sum frequency generation. J Am Chem Soc. 1995;117:8039–40.

    Article  CAS  Google Scholar 

  56. Liu Y, Wolf LK, Messmer MC. A study of alkyl chain conformational changes in self-assembled n-octadecyltrichlorosilane monolayers on fused silica surfaces. Langmuir. 2001;17:4329–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We wish to thank Prof. Daisuke Kawaguchi of Kyushu University for fruitful discussions and are also grateful for support from the JST-Mirai Program (JPMJMI18A2). The authors also thank Mr. Kotaro Ichino (Mitsui Chemicals Inc.) for his great cooperation in our research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kiminori Uchida, Satoru Yamamoto or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uchida, K., Mita, K., Yamamoto, S. et al. Conformational relaxation of ethylene-propylene-diene terpolymer at a solid interface. Polym J 55, 683–690 (2023). https://doi.org/10.1038/s41428-023-00764-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00764-x

This article is cited by

Search

Quick links