Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dispersion of submicron-sized SiO2/Al2O3-coated TiO2 particles and efficient encapsulation via the emulsion copolymerization of methacrylates using a thermoresponsive polymerizable nonionic surfactant

Abstract

Submicron-sized SiO2/Al2O3(Si/Al)-coated titanium dioxide (Si/Al-TiO2) particles were encapsulated through the emulsion copolymerization of methacrylates using a thermoresponsive polymerizable nonionic surfactant, NE-10. An optimized water-dispersion method was developed to disperse Si/Al-TiO2 dried powders after various methods were investigated, such as using an ultrasonic homogenizer, a paint shaker, and a pot mill rotator (PMR) in the presence of partially neutralized poly(isobutylene-alt-maleic acid). The ultrasonic homogenizer successfully dispersed Si/Al-TiO2 in water, whereas the paint shaker and PMR caused overdispersion and broke the SiO2/Al2O3 shell. The optimal dispersion of Si/Al-TiO2 was obtained under the following conditions: 40 wt% solid content, 0.3 mm SiO2 beads, 0.25 wt% ISOBAM-600 (neutralization degree = 0.7), rotating speed <100 rpm, and rotating time <4 h. The encapsulation efficiency (Fen) was affected by the monomer and initiator types, NE-10 and sodium dodecyl sulfonate concentrations, and whether the process was batch or semibatch. The NE-10 concentration exhibited a significant effect on Fen; the optimal NE-10 addition was 1.4–2.5 mg for 1.0 g of Si/Al-TiO2. Fen > 90% was achieved using 0.25 g methyl methacrylate and 0.75 g n-butyl methacrylate, following a two-step semibatch emulsion copolymerization under optimized conditions. Compared to bare Si/Al-TiO2, the encapsulated hybrid particles showed a higher reflectance and dispersion stability in water.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2003;48:53–229.

    CAS  Google Scholar 

  2. Al-Kattan A, Wichser A, Zuin S, Arroyo Y, Golanski L, Ulrich A. Behavior of TiO2 released from Nano-TiO2-containing paint and comparison to pristine Nano-TiO2. Environ Sci Technol. 2014;48:6710–8.

    CAS  PubMed  Google Scholar 

  3. Li X, Dai S-M, Zhu P, Deng L-L, Xie S-Y, Cui Q. Efficient perovskite solar cells depending on TiO2 nanorod arrays. ACS Appl Mater Interfaces. 2016;8:21358–65.

    CAS  PubMed  Google Scholar 

  4. Fernandes A, Makoś P, Wang Z, Boczkaj G. Synergistic effect of TiO2 photocatalytic advanced oxidation processes in the treatment of refinery effluents. Chem Eng J. 2020;391:123488.

    CAS  Google Scholar 

  5. Farrokhpay S, Morris GE, Fornasiero D. Titania pigment particles dispersion in water-dased paint films. J Coat Technol Res. 2006;3:275–83.

  6. Grin M, Siemiatycki J, Dsy M, Krewski D. Associations between several sites of cancer and occupational exposure to benzene, toluene, xylene, and styrene: Results of a case-control study in Montreal. Am J Ind Med. 1998;34:144–56.

    Google Scholar 

  7. Farrokhpay S. A review of polymeric dispersant stabilisation of titania pigment. Adv Colloid Interface Sci. 2009;151:24–32.

    CAS  PubMed  Google Scholar 

  8. Solis GA, Neira VMG, Morales J, Sanchez CMA, Perez E. Improving stability of TiO2 particles in water by RF-plasma polymerization of poly(acrylic acid) on the particle surface. Colloids Surfaces A Physicochem Eng Asp. 2014;451:66–74.

    Google Scholar 

  9. Nguyen VS, Rouxel D, Vincent B. Dispersion of nanoparticles: from organic solvents to polymer solutions. Ultrason Sonochem. 2014;21:149–53.

    CAS  PubMed  Google Scholar 

  10. Braun JH, Baidins A, Marganski RE. TiO2 pigment technology: a review. Prog Org Coatings. 1992;20:105–38.

    CAS  Google Scholar 

  11. Hakim LF, King DM, Zhou Y, Gump CJ, George SM, Weimer AW. Nanoparticle coating for advanced optical, mechanical and rheological properties. Adv Funct Mater. 2007;17:3175–81.

    CAS  Google Scholar 

  12. King DM, Liang X, Burton BB, Kamal Akhtar M, Weimer AW. Passivation of pigment-grade TiO2 particles by nanothick atomic layer deposited SiO2 films. Nanotechnology. 2008;19:255604.

    PubMed  Google Scholar 

  13. Liang X, Weimer AW. Photoactivity passivation of TiO2 nanoparticles using molecular layer deposited (MLD) polymer films. J Nanoparticle Res. 2010;12:135–42.

    CAS  Google Scholar 

  14. Wang C, Mao H, Wang C, Fu S. Dispersibility and hydrophobicity analysis of titanium dioxide nanoparticles grafted with silane coupling agent. Ind Eng Chem Res. 2011;50:11930–4.

    CAS  Google Scholar 

  15. Shen X, Sun X, Liu J, Hang J, Jin L, Shi L. A facile strategy to achieve monodispersity and stability of pigment TiO2 particles in low viscosity systems. J Colloid Interface Sci. 2021;581:586–94.

    CAS  PubMed  Google Scholar 

  16. Gonzalez RV, Lizeth ZTD, Vallejo MJ, Zarraga NR, Amir GCJ, Perez E. Improving titanium dioxide dispersion in water through surface functionalization by a dicarboxylic acid. J Dispers Sci Technol. 2018;40:1039–45.

    Google Scholar 

  17. Hasegawa M, Arai K, Saito S. Effect of surfactant adsorbed on encapsulation of fine inorganic powder with soapless emulsion polymerization. J Polym Sci Part A Polym Chem. 1987;25:3231–9.

    CAS  Google Scholar 

  18. Farrokhpay S, Morris GE, Fornasiero D, Self P. Effects of chemical functional groups on the polymer adsorption behavior onto titania pigment particles. J Colloid Interface. Sci. 2004;274:33–40.

    CAS  PubMed  Google Scholar 

  19. Lerch JP, Atanase LI, Riess G. Adsorption of nonionic ABC triblock copolymers: Surface modification of TiO2 suspensions in aqueous and non-aqueous medium. Appl Surf Sci. 2017;419:713–9.

    CAS  Google Scholar 

  20. Chong P, Curthoys G. Adsorption of partially hydrolyzed polyacrylamide on titanium dioxide. Int J Miner Process. 1979;5:335–47.

    CAS  Google Scholar 

  21. Sun X, Ma L, Tan X, Wang K, Liu Q. Influence of molecular weight on polyacrylic acid flocculation of sub-micron titanium dioxide. Colloids Surfaces A Physicochem Eng Asp. 2020;603:125195.

    CAS  Google Scholar 

  22. Sato K, Kondo S, Tsukada M, Ishigaki T, Kamiya H. Influence of solid fraction on the optimum molecular weight of polymer dispersants in aqueous TiO2 nanoparticle suspensions. J Am Ceram Soc. 2007;90:3401–6.

    CAS  Google Scholar 

  23. Liufu S, Xiao H, Li Y. Adsorption of poly(acrylic acid) onto the surface of titanium dioxide and the colloidal stability of aqueous suspension. J Colloid Interface Sci. 2005;281:155–63.

    CAS  PubMed  Google Scholar 

  24. Costa JRC, Correia C, Góis JR, Silva SMC, Antunes FE, Moniz J, et al. Efficient dispersion of TiO2 using tailor made poly(acrylic acid)−based block copolymers, and its incorporation in water based paint formulation. Prog Org Coatings. 2017;104:34–42.

    CAS  Google Scholar 

  25. McNeil L, French R. Multiple scattering from rutile TiO2 particles. Acta Mater. 2000;48:4571–6.

    CAS  Google Scholar 

  26. Auger JC, Stout B. Dependent light scattering in white paint films: clarification and application of the theoretical concepts. J Coatings Technol Res. 2012;9:287–95.

    CAS  Google Scholar 

  27. Auger JC, McLoughlin D. Theoretical analysis of light scattering properties of encapsulated rutile titanium dioxide pigments in dependent light scattering regime. Prog Org Coatings. 2014;77:1619–28.

    CAS  Google Scholar 

  28. Janssen RQF Polymer Encapsulation of Titanium Dioxide: Efficiency, Stability and Compatibility. Technische Universiteit Eind_hoven: Eindhovern, Netherlands. 1995.

  29. Erdem B, Hunsicker RA, Simmons GW, David Sudol E, Dimonie VL, El-Aasser MS. XPS and FTIR surface characterization of TiO2 particles used in polymer encapsulation. Langmuir. 2001;17:2664–9.

    CAS  Google Scholar 

  30. Dong S, Quek JY, Van Herk AM, Jana S. Polymer-encapsulated TiO2 for the improvement of NIR reflectance and total solar reflectance of cool coatings. Ind Eng Chem Res. 2020;59:17901–10.

    CAS  Google Scholar 

  31. Ray NK, Gundabala V. Synthesis and characterization of titanium dioxide encapsulated poly(styrene-co-butyl acrylate-co-acrylic acid) nanocomposite latex. Prog Org Coatings. 2017;111:93–8.

    CAS  Google Scholar 

  32. Nakamura H, Ishii M, Tsukigase A, Harada M, Nakano H. Close-packed colloidal crystalline arrays composed of polystyrene latex coated with titania nanosheets. Langmuir. 2005;21:8918–22.

    CAS  PubMed  Google Scholar 

  33. Chen JH, Dai CA, Chen HJ, Chien PC, Chiu WY. Synthesis of nano-sized TiO2/poly(AA-co-MMA) composites by heterocoagulation and blending with PET. J Colloid Interface Sci. 2007;308:81–92.

    CAS  PubMed  Google Scholar 

  34. Daigle JC, Claverie JP. A simple method for forming hybrid core-shell nanoparticles suspended in water. J Nanomater. 2008;2008:1–8.

    Google Scholar 

  35. Liu J, Cao L, Su G, Liu W. Preparation of low density TiO2/poly (methyl methacrylate) composite particles by emulsifier-free emulsion polymerization. Curr Appl Phys. 2011;11:1359–63.

    Google Scholar 

  36. Erdem B, Sudol ED, Dimonie VL, El-Aasser MS. Encapsulation of inorganic particles via miniemulsion polymerization. I. Dispersion of titanium dioxide particles in organic media using OLOA 370 as stabilizer. J Polym Sci Part A Polym Chem. 2000;38:4419–30.

    CAS  Google Scholar 

  37. Caruso RA, Susha A, Caruso F. Multilayered titania, silica, and laponite nanoparticle coatings on polystyrene colloidal templates and resulting inorganic hollow spheres. Chem Mater. 2001;13:400–9.

    CAS  Google Scholar 

  38. Nguyen D, Zondanos HS, Farrugia JM, Serelis AK, Such CH, Hawkett BS. Pigment encapsulation by emulsion polymerization using macro-RAFT copolymers. Langmuir. 2008;24:2140–50.

    CAS  PubMed  Google Scholar 

  39. Rahim AMM, Mahdavian AR, Gharieh A, Salehi-Mobarakeh H. Chemical modification of TiO2 nanoparticles as an effective way for encapsulation in polyacrylic shell via emulsion polymerization. Prog Org Coatings. 2015;88:310–5.

    Google Scholar 

  40. Sheng X, Xie D, Wang C, Zhang X, Zhong L. Synthesis and characterization of core/shell titanium dioxide nanoparticle/polyacrylate nanocomposite colloidal microspheres. Colloid Polym Sci. 2016;294:463–9.

    CAS  Google Scholar 

  41. Arai K, Mizutani T, Miyamoto M, Kimura Y, Aoki T. Colloidal silica bearing thin polyacrylate coat: A facile inorganic modifier of acrylic emulsions for fabricating hybrid films with least aggregation of silica nanoparticles. Prog Org Coatings. 2019;128:11–20.

    CAS  Google Scholar 

  42. Kitano T, Kawaguchi S, Anazawa N. Dissociation behavior of an alternating copolymer of isobutylene and maleic acid by potentiometric titration and intrinsic viscosity. Macromolecules. 1987;20:2498–506.

    CAS  Google Scholar 

  43. Kawaguchi S, Kitano T, Ito K. Infrared and ultraviolet spectroscopic studies on intramolecular hydrogen bonding in an alternating copolymer of isobutylene and maleic acid. Macromolecules. 1991;24:6030–6.

    CAS  Google Scholar 

  44. Yalkowsky SH, He Y, Jain P Handbook of Aqueous Solubility Data. Second Edi. CRC Press, Taylor & Francis Group; 2010.

  45. Kawaguchi S, Imai G, Suzuki J, Miyahara A, Kitano T, Ito K. Aqueous solution properties of oligo- and poly(ethylene oxide) by static light scattering and intrinsic viscosity. Polymer. 1997;38:2885–91.

    CAS  Google Scholar 

  46. Zainith P, Mishra NK. Experimental investigations on stability and viscosity of carboxymethyl cellulose (CMC)‑based Non‑Newtonian nanofluids with different nanoparticles with the combination of distilled water. Int J Thermophys. 2021;42:137.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank AJE (www.aje.com) for English language editing.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed toward the writing of this manuscript and have approved the final version of the manuscript.

Corresponding author

Correspondence to Seigou Kawaguchi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, M.K., Enomoto, K., Kikuchi, M. et al. Dispersion of submicron-sized SiO2/Al2O3-coated TiO2 particles and efficient encapsulation via the emulsion copolymerization of methacrylates using a thermoresponsive polymerizable nonionic surfactant. Polym J 55, 617–629 (2023). https://doi.org/10.1038/s41428-023-00757-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-023-00757-w

This article is cited by

Search

Quick links