Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Cholesterol side groups in Helical Poly(3-alkylesterfurans)

Abstract

Poly(3-alkylesterfurans) fold into helical conformations due to a preference for adjacent furan repeat units in the polymer backbone to adopt a syn conformation in which the oxygen atoms of the furan rings are oriented in the same direction. In this contribution, a new chiral helical poly(3-alkylesterfuran) is reported in which a cholesterol group has been attached to the backbone to ensure excess single-handed helix chirality. This rigid side group promotes a folded conformation of the polymer in chloroform, as evidenced by 1H NMR, absorption, and circular dichroism studies. This is unique among previously reported helical poly(3-alkylesterfurans) with S-3-octanol side chains, as those polymers are much more disordered in the same solvent. Circularly polarized luminescence studies also indicated how the chiroptical properties are impacted by intermolecular aggregation of these helical polymers. The study reveals the potential for tuning the properties of helical polyfurans via precise choice of the chiral side chain, which can be installed during monomer synthesis via a Steglich modification of 2-bromo-3-furoic acid. Suzuki-Miyaura cross-coupling polymerization produces the desired chiral helical polymers in reasonable yields with molecular weights above 10 kg/mol when the commercially available PEPPSI-IPent catalyst is used to catalyze cross-coupling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular Helical Systems: Helical Assemblies of Small Molecules, Foldamers, and Polymers with Chiral Amplification and Their Functions. Chem Rev. 2016;116:13752–990.

    Article  CAS  PubMed  Google Scholar 

  2. Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical Polymers: Synthesis, Structures, and Functions. Chem Rev. 2009;109:6102–211.

    Article  CAS  PubMed  Google Scholar 

  3. Nakano T, Okamoto Y. Synthetic Helical Polymers: Conformation and Function. Chem Rev. 2001;101:4013–38.

    Article  CAS  PubMed  Google Scholar 

  4. Verswyvel M, Koeckelberghs G. Chirality in Conjugated Polymers: When Two Components Meet. Polym Chem. 2012;3:3203–16.

    Article  CAS  Google Scholar 

  5. Kane-Maguire LAP, Wallace GG. Chiral Conducting Polymers. Chem Soc Rev. 2010;39:2545–76.

    Article  CAS  PubMed  Google Scholar 

  6. Freire F, Quiñoá E, Riguera R. Supramolecular Assemblies from Poly(phenylacetylene)s. Chem Rev. 2016;116:1242–71.

    Article  CAS  PubMed  Google Scholar 

  7. Brunsveld L, Prince RB, Meijer EW, Moore JS. Conformational Ordering of Apolar, Chiral m-Phenylene Ethynylene Oligomers. Org Lett. 2001;2:1525–8.

    Article  Google Scholar 

  8. Brunsveld L, Meijer EW, Prince RB, Moore JS. Self-Assembly of Folded m-Phenylene Ethynylene Oligomers into Helical Columns. J Am Chem Soc. 2001;123:7978–84.

    Article  CAS  PubMed  Google Scholar 

  9. Hu Y, Song F, Xu Z, Tu Y, Zhang H, Cheng Q, et al. Circularly Polarized Luminescence from Chiral Conjugated Poly(carbazole-ran-acridine)s with Aggregation-Induced Emission and Delayed Fluorescence. ACS Appl Polym Mater. 2019;1:221–9.

    Article  CAS  Google Scholar 

  10. Vanormelingen W, Smeets A, Franz E, Asselberghs I, Clays K, Verbiest T, et al. Conformational Steering in Substituted Poly(3,6-phenanthrene)s: A Linear and Nonlinear Optical Study. Macromolecules 2009;42:4282–7.

    Article  CAS  Google Scholar 

  11. Vanormelingen W, Van den Bergh K, Verbiest T, Koeckelberghs G. Conformational Transitions in Chiral, Gallic Acid-Functionalized Poly(dithienopyrrole): A Comparative UV-vis and CD Study. Macromolecules 2008;41:5582–9.

    Article  CAS  Google Scholar 

  12. Wang Y, Harada T, Phuong LQ, Kanemitsu Y, Nakano T. Helix Induction to Polyfluorenes Using Circularly Polarized Light: Chirality Amplification, Phase-Selective Induction, and Anisotropic Emission. Macromolecules 2018;51:6865–77.

    Article  CAS  Google Scholar 

  13. Wang K, Xiao Y. Chirality in Polythiophenes: A Review. Chirality 2021;33:424–46.

    Article  CAS  PubMed  Google Scholar 

  14. Ewbank PC, Stefan MC, Sauvé G, McCullough RD. Synthesis, Characterization and Properties of Regioregular Polythiophene-Based Materials. In Handbook of Thiophene-Based Materials. In: Perepichka, IF;, Perepichka DF, editors. Chichester, UK: John Wiley & Sons, Ltd; 2009. p. 157–217.

  15. McCullough RD, Lowe RD. Enhanced Electrical Conductivity in Regioselectively Synthesized Poly(3-alkylthiophenes). J Chem Soc Chem Commun. 1992;70–2.

  16. Miyakoshi R, Yokoyama A, Yokozawa T. Synthesis of Poly(3-hexylthiophene) with a Narrower Polydispersity. Macromol Rapid Commun. 2004;25:1663–6.

    Article  CAS  Google Scholar 

  17. Sheina EE, Liu J, Iovu MC, Laird DW, McCullough RD. Chain Growth Mechanism for Regioregular Nickel-Initiated Cross-Coupling Polymerizations. Macromolecules 2004;37:3526–8.

    Article  CAS  Google Scholar 

  18. Yokoyama A, Miyakoshi R, Yokozawa T. Chain-Growth Polymerization for Poly(3-hexylthiophene) with a Defined Molecular Weight and a Low Polydispersity. Macromolecules 2004;37:1169–71.

    Article  CAS  Google Scholar 

  19. Leysen P, Teyssandier J, De Feyter S, Koeckelberghs G. Controlled Synthesis of a Helical Conjugated Polythiophene. Macromolecules 2018;51:3504–14.

    Article  CAS  Google Scholar 

  20. Wang P, Jeon I, Lin Z, Peeks MD, Savagatrup S, Kooi SE, et al. Insights into Magneto-Optics of Helical Conjugated Polymers. J Am Chem Soc. 2018;140:6501–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ikai T, Takayama K, Wada Y, Minami S, Apiboon C, Shinohara K. Synthesis of a One-Handed Helical Polythiophene: A New Approach Using an Axially Chiral Bithiophene with a Fixed syn-conformation. Chem Sci. 2019;10:4890–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gidron O, Dadvand A, Wei-Hsin Sun E, Chung I, Shimon LJW, Bendikov M, et al. Oligofuran-Containing Molecules for Organic Electronics. J Mater Chem C. 2013;1:4358–67.

    Article  CAS  Google Scholar 

  23. Gidron O, Bendikov M. α-Oligofurans: An Emerging Class of Conjugated Oligomers for Organic Electronics. Angew Chem Int Ed. 2014;53:2546–55.

    Article  CAS  Google Scholar 

  24. Jin X-H, Sheberla D, Shimon LJW, Bendikov M. Highly Coplanar Very Long Oligo(alkylfuran)s: A Conjugated System with Specific Head-To-Head Defect. J Am Chem Soc. 2014;136:2592–601.

    Article  CAS  PubMed  Google Scholar 

  25. Varni AJ, Fortney A, Baker MA, Worch JC, Qiu Y, Yaron D, et al. Photostable Helical Polyfurans. J Am Chem Soc. 2019;141:8858–67.

    Article  CAS  PubMed  Google Scholar 

  26. Jones GIL, Owen NL. Molecular Structure and Conformation of Carboxylic Esters. J Mol Struct. 1973;18:1–32.

    Article  CAS  Google Scholar 

  27. Bloom JWG, Wheeler SE. Benchmark Torsional Potentials of Building Blocks for Conjugated Materials: Bifuran, Bithiophene, and Biselenophene. J Chem Theory Comput. 2014;10:3647–55.

    Article  CAS  PubMed  Google Scholar 

  28. Lin JB, Jin Y, Lopez SA, Druckerman N, Wheeler SE, Houk KN. Torsional Barriers to Rotation and Planarization in Heterocyclic Oligomers of Value in Organic Electronics. J Chem Theory Comput. 2017;13:5624–38.

    Article  CAS  PubMed  Google Scholar 

  29. Topolskaia V, Pollit AA, Cheng S, Seferos DS. Trends in Conjugated Chalcogenophenes: A Theoretical Study. Chem Eur J. 2021;27:9038–43.

    Article  CAS  PubMed  Google Scholar 

  30. Chotana GA, Kallepalli VA, Maleczka RE, Smith MR. Iridium-Catalyzed Borylation of Thiophenes: Versatile, Synthetic Elaboration Founded on Selective C-H Functionalization. Tetrahedron 2008;64:6103–14.

    Article  CAS  Google Scholar 

  31. Valente C, Çalimsiz S, Hoi KH, Mallik D, Sayah M, Organ MG. The Development of Bulky Palladium NHC Complexes for the Most-Challenging Cross-Coupling Reactions. Angew Chem Int Ed. 2012;51:3314–32.

    Article  CAS  Google Scholar 

  32. Kawakami M, Schulz KHG, Varni AJ, Tormena CF, Gil RR, Noonan KJT. Statistical Copolymers of Thiophene-3-carboxylates and Selenophene-3-carboxylates; 77Se NMR as a Tool to Examine Copolymer Sequence in Selenophene-based Conjugated Polymers. Polym Chem. 2022;13:5316–24.

    Article  CAS  Google Scholar 

  33. Duong ST, Fujiki M. The Origin of Bisignate Circularly Polarized Luminescence (CPL) Spectra from Chiral Polymer Aggregates and Molecular Camphor: anti-Kasha’s Rule Revealed by CPL Excitation (CPLE) Spectra. Polym Chem. 2017;8:4673–9.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

KJTN and SB are grateful to the NSF for support of this work (CHE-2109065 and CHE-2102460).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin J. T. Noonan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawakami, M., Downey, P., Peteanu, L. et al. Cholesterol side groups in Helical Poly(3-alkylesterfurans). Polym J 55, 565–570 (2023). https://doi.org/10.1038/s41428-022-00741-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00741-w

Search

Quick links