Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Double-cyclopolymerization using trifunctional incompletely condensed cage silsesquioxane with methacryloyl groups

Abstract

A tris(methacrylethoxypropyldimethylsiloxy)-heptaisobutyl-substituted corner-opening typed cage silsesquioxane (CO-POSS) monomer (3) was prepared as a pale-yellow liquid by hydrosilylation of trisdimetylsilyl-capped heptaisobutyl-substituted trisilanol (1) with ethylene glycol monoallyl ether and subsequent reaction with methacryloyl chloride. Free-radical and reversible addition-fragmentation chain transfer (RAFT) polymerization was performed using the newly prepared trifunctional CO-POSS monomer (3). Although the free radical polymerization of 3 showed gelation at a monomer concentration of 0.2 M, the RAFT polymerization of 3 afforded a homogeneous solution at the same monomer concentration. The optical transmittances of the cast films for the resulting soluble polymers were over 95% in the visible region. Decreasing the number of dangling chains in the polymer improved the thermal stability and Martens’ hardness. Introducing the CO-POSS unit in the side chain significantly improved the surface hydrophobicity and no surface reorganization occurred even though the film was in contact with water for several days.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Scheme 3
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cordes DB, Lickiss PD, Rataboul F. Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 2010;110:2081–173.

    Article  CAS  PubMed  Google Scholar 

  2. Laine RM. Nanobuilding blocks base on the [OSiO1.5]x (x = 6, 8, 10) octasilsesquioxanews. J Mater Chem. 2005;15:3725–44.

    Article  CAS  Google Scholar 

  3. Chujo Y, Tanaka K. New polymeric materials based on element-blocks. Bull Chem Soc Jpn. 2015;88:633–43.

    Article  CAS  Google Scholar 

  4. Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–46.

    Article  CAS  Google Scholar 

  5. Li G, Wang L, Ni H, Pittman CU Jr. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers. J Inorg Org Polym. 2001;11:123–54.

    Article  CAS  Google Scholar 

  6. Zheng L, Hong S, Cardoen G, Burgaz E, Gido S, Coughlin EB. Polymer nanocomposites through controlled self-assembly of cubic silsesquioxane scaffolds. Macromolecules. 2004;37:8606–11.

    Article  CAS  Google Scholar 

  7. Seurer B, Coughlin EB. Ethylene-propylene-silsesquioxane thermoplastic elastomers. Macromol Chem Phys. 2008;209:1198–209.

    Article  CAS  Google Scholar 

  8. Leu C-M, Chang Y-T, Wei K-H. Synthesis and dielectric properties of poluimide-tethered polyhedral oligomeric silsesquioxane (POSS) nanocomposites via POSS-diamine. Macromolecules. 2003;36:9122–7.

    Article  CAS  Google Scholar 

  9. Sato Y, Imoto H, Naka K. Soluble and film-formable homopolymer tethering side-opened cage silsesquioxane pendants. J Polym Sci. 2020;58:1456–62.

    Article  CAS  Google Scholar 

  10. Imoto H, Nakao Y, Nishizawa N, Fujii S, Nakamura Y, Naka K. TripodAl polyhedral oligomeric silsesquioxanes as novel class of three-dimensional emulsifiers. Polym J. 2015;47:609–15.

    Article  CAS  Google Scholar 

  11. Yuasa S, Sato Y, Imoto H, Naka K. Fabrication of composite films with poly(methyl methacrylate) and incompletely condensed cage-silsesquioxane fillers. J Appl Polym Sci. 2018;135:46033.

    Article  Google Scholar 

  12. Yuasa S, Sato Y, Imoto H, Naka K. Thermal properties of open-cage silsesquioxanes: the effect of substituents at the corners and opening moieties. Bull Chem Soc Jpn. 2019;92:127–32.

    Article  CAS  Google Scholar 

  13. Katoh R, Imoto H, Naka K. One-pot strategy for synthesis of open-cage silsesquioxane monomers. Polym Chem. 2019;10:2223–9.

    Article  CAS  Google Scholar 

  14. Imoto H, Ueda Y, Sato Y, Nakamura M, Mitamura K, Watase S, et al. Corner- and side-opened cage silsesquioxanes: structural effects on the materials properties. Eur J Inorg Chem. 2020;2020:737–42.

    Article  CAS  Google Scholar 

  15. Igarashi A, Ueda Y, Katoh R, Imoto H, Naka K. Highly selective mono-functionalization of open-cage silsesquioxane toward film-formable homopolymer. J Polym Sci. 2021;59:131–8.

    Article  CAS  Google Scholar 

  16. Pasini D, Takeuchi D. Cyclopolymerizations: synthesis tools for the precision synthesis of macromolecular architectures. Chem Rev. 2018;118:8983–9057.

    Article  CAS  PubMed  Google Scholar 

  17. Terashima T, Kawabe M, Miyabara Y, Yoda H, Sawamoto M. Polymeric pseudo-crown ether for cation recognition via cation template-assisted cyclopolymerization. Nat Commun. 2013;4:2321.

    Article  PubMed  Google Scholar 

  18. Hibi Y, Ouchi M, Sawamoto M. Sequence-regulated radical polymerization with a metal-templated monomer: repetitive ABA sequence by double cyclopolymerization. Angew Chem Int Ed. 2011;50:7434–7.

    Article  CAS  Google Scholar 

  19. Mato Y, Sudo M, Marubayashi H, Ree BJ, Tajima K, Yamamoto T, et al. Densely arrayed cage-shaped polymer topologies synthesized via cyclopolymerization of star-shaped macromolecules. Macromolecules. 2021;54:9079–90.

    Article  CAS  Google Scholar 

  20. Okamoto S, Onoue S, Muramatsu M, Yoshikawa S, Sudo A. Radical polymerization of methacrylates with an adamantane-like rigid core derived from naturally occurring myo-inositol. J Polym Sci Part A: Polym Chem. 2015;53:2411–20.

    Article  CAS  Google Scholar 

  21. Li J, Du M, Zhao Z, Liu H. Cyclopolymerization of disiloxane-tethered divinyl monomers to synthesize chirality-responsive helical polymers. Macromolecules. 2016;49:445–94.

    Article  CAS  Google Scholar 

  22. Ochiai B, Ootani Y, Endo T. Controlled cyclopolymerization through quantitative 19-membered ring formation. J Am Chem Soc. 2008;130:10832–3.

    Article  CAS  PubMed  Google Scholar 

  23. Tokuami I, Suzuki R, Nagao M, Okada A, Imoto H, Naka K. Entropy-driven segregation of a hydrophilic cage octasilicate for improving surface hydrophilicity. ACS Appl Polym Mater. 2022;4:5413–21.

    Article  Google Scholar 

  24. Tateishi Y, Kai N, Nogochi H, Uosaki K, Nagamura T, Tanaka K. Local comformation of poly(methyl methacrylate) at nitrogen and water interfaces. Polym Chem. 2010;1:303–11.

    Article  CAS  Google Scholar 

  25. Horinouchi A, Atarashi H, Fujii Y, Tanaka K. Dynamics of water-induced surface reorganization in poly(methyl methacrylate) films. Macromolecules. 2012;45:4638–42.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant-in-Aid for Scientific Research (No. 19H02764) from the Ministry of Education, Culture, Sports, Science, and Technology, Government of Japan. We thank Prof. Tsuyoshi Kawai, Ms Yoshiko Nishikawa, and Mieko Yamagaki of Nara Institute of Science and Technology for performing MALDI-TOF-MS supported by ARIM Program of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kensuke Naka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakano, T., Okamoto, K., Imoto, H. et al. Double-cyclopolymerization using trifunctional incompletely condensed cage silsesquioxane with methacryloyl groups. Polym J 55, 193–201 (2023). https://doi.org/10.1038/s41428-022-00737-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00737-6

This article is cited by

Search

Quick links