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Abstract
Polymers, especially charged polymers, are the key to a sustainable future, as they have the capability to act as alternatives to
plastics, reduce the impact of global warming, and offer solutions to global environmental pollution problems. Biomaterial
polymers have proven to be incredibly effective in a multitude of applications, including clinical applications. In the fields of
cryobiology and cryopreservation, polymers have emerged as credible alternatives to small molecules and other compounds,
yielding excellent results. This review outlines the results of research in the areas of polymer chemistry and cryobiology,
which have not been discussed together previously. Herein, we explain how recent polymer research has enabled the
development of polymeric cryoprotectants with novel mechanisms and the development of novel methods for the
intracellular delivery of substances, such as drugs, using a cryobiological technique called the freeze-concentration effect.
Our findings indicate that interdisciplinary collaboration between cryobiologists and polymer chemists has led to exciting
developments that will further cell biology and medical research.

Introduction

Polymeric materials are used in various fields owing to the
ease of adding functionality through molecular design. For
example, in the biomedical field, polymers are used as
surface coatings for implantable materials [1, 2], socket
materials for artificial joints [3], substrates for drug delivery
systems [4, 5], scaffolds for tissue engineering or trans-
plantation [6], and optical materials such as contact lenses
and intraocular lenses [7]. In the field of regenerative
medicine, many studies are being conducted on polymers
and polymeric hydrogel materials that can be used as
scaffolds for cell cultures [8]. Polymer chemistry involves
fundamental and applied knowledge that can be used not
only in the field of biotechnology but also in materials-
based fields, such as the energy and electronics fields.

For example, in the field of cell biology, which is
essential for medical biology research, it was reported that
poly(vinyl alcohol), one of the simplest polymers, has
shown potential for the control of cell differentiation [9]. It
is very exciting to see new reports of simple polymers

manifesting unexpected biological activities. Polymers have
also found a niche in the field of cryobiology, which was
previously dominated by small molecules. Among the
cryoprotective polymers discussed in this review are some
with surprising properties.

In the field of cell research, techniques have already been
established for the freezing and preservation of cells for
delivery and storage. The technology is based on the pro-
tective effect of adding a cryoprotectant (CPA) to the cells.
By adding a small-molecule CPA, such as dimethyl sulf-
oxide (DMSO), and keeping the cells at a low temperature,
the cells can be protected from damage during freezing [10].
Although polymers have not often been applied for such
purposes, increasing pressure to avoid the use of DMSO,
which is cytotoxic and affects cell differentiation [11], has
prompted research into polymeric CPAs that do not pene-
trate cell membranes. DMSO remains the preferred CPA in
many biological applications because there are no effective
substitutes. We were the first to report that polyampholytes
(polymers containing positive and negative charges) have
cryoprotective properties for cells [12]. Moreover, we stu-
died polyampholytes to determine the relationship between
their molecular structure and their function, elucidated their
mechanisms, and investigated their applications [13–16].

Cryobiology involves the study of the behavior of bio-
logical systems at low temperatures, including the dynamics
of biomolecules, cells, and organisms during freezing [17].
When a cell suspension is frozen, the extracellular fluid
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freezes first, and then the solutes excluded from the ice
crystals are concentrated in a process called freeze con-
centration [18]. This dehydrates the cells and prevents the
lethal formation of intracellular ice, which is one mechan-
ism for avoiding freezing damage. In this case, the addition
of materials such as micelles, nanogels, nanoparticle-
carrying proteins, and other substances to cells prior to
freezing increases their concentration in the solution around
the cells, making it possible to concentrate the materials
around the cells simply by freezing and thawing. Moreover,
by using polymeric carriers with a high affinity for cell
membranes, it is possible to increase the efficiency of
material transfer into cells by adsorption to the membrane
and automatic uptake by the cells [19, 20].

The content of this review bridges the fields of polymer
chemistry and cryobiology and includes the development of
cryoprotective materials using polymer chemistry technol-
ogy and intracellular drug delivery systems constructed
from polymeric materials based on the phenomenon of
freeze concentration, specifically those using poly-
ampholytes as polymeric CPAs. Additionally, the mechan-
ism of cryoprotection is discussed in detail. Polymeric
compounds are more adaptable and versatile than their
small-molecule counterparts and have the potential to
revolutionize the development of newer and more
efficient CPAs.

Polymeric cryoprotectants—polymer
chemistry and cryobiology

Cells required for medical biological research are often
stored frozen for long periods and thawed for use as needed.
In such cases, the addition of a CPA is generally required to
prevent cell death during freezing. Glycerol was first
reported as a protective agent by Polge et al. in 1949 [21],
and 10 years later, DMSO was reported to be effective for
the cryopreservation of red blood cells [10]. DMSO is used
as a CPA in a wide range of cell cryopreservation appli-
cations, such as cell banking and cell cryopreservation in
laboratories, because of its low cost and high cryoprotective
activity. However, alternative CPAs are sometimes required
to replace DMSO, such as in cases in which its toxicity to
cells or organisms cannot be ignored or cases involving
cells whose differentiation is affected by DMSO [11]. In
recent years, various compounds ranging from small
molecules to polymers have been reported as new CPAs to
meet such needs [22].

Small-molecule CPAs can be divided into membrane-
permeable and nonpermeable CPAs. Glycerol and DMSO
are representative membrane-permeable CPAs. Glycerol is
currently used as a CPA for red blood cells, fertilized eggs,
and sperm from livestock. Glycerol is a polyol, a compound

with multiple hydroxyl groups. DMSO is a CPA used in a
wide range of fields, including the cryopreservation of
various types of cells in cell banks and cryopreservation of
cells in laboratories. These CPAs are reported to suppress
the formation of intracellular ice crystals by penetrating
cells and dehydrating and displacing cells [23]. In contrast,
sugars, including disaccharides such as trehalose and
sucrose, and oligosaccharides, such as raffinose, are typical
examples of membrane-impermeable CPAs. These sugars
displace water in the vicinity of the cell membrane and
protect the membrane [24]. The polysaccharide hydro-
xyethyl starch (HES) has also been used as a CPA [25]. It is
predominantly used as an adjunct to membrane-penetrating
CPAs such as DMSO. Recently, ionic liquids [26] and
glycolipids [27] have been reported to have cryoprotective
properties, and the search for CPAs from the viewpoint of
molecular chemistry using computer simulation has attrac-
ted significant interest [28].

A wide range of substances are being investigated as
macromolecular CPAs, including naturally occurring sub-
stances such as proteins and polysaccharides, as well as
synthetic macromolecules. For example, cell cryoprotective
effects have been reported for proteins extracted from wheat
[29]. Moreover, several polymer-based CPAs (including
polyampholytes) that demonstrate remarkable properties
have been developed, and the structures of several synthetic
polymer-based CPAs are summarized in Fig. 1, with further
details provided in Table 1. Various synthetic polymers
have been reported to exhibit cryoprotective effects, and
interesting studies have been conducted on the correlation
between structure and function. Notably, polymeric CPAs
are hydrophilic and often contain a number of charges or
introduced sugar moieties. Herein, we have classified these
polymeric CPAs in terms of their mechanisms.

Proposed mechanism of ice crystal
formation inhibition effect

Polyvinylpyrrolidone, polyvinyl alcohol (PVA), and some
proteins have been reported to act as cryoprotective poly-
mers, and they are often used in combination with small-
molecule protectants. Antifreeze proteins (AFPs) are a class
of proteins obtained from many plants and animals,
including fish, insects, and fungi, that can survive under
freezing conditions. They have been reported to inhibit ice
crystal formation by binding to ice nuclei [30, 31]. Research
is underway to realize cryopreservation using AFPs or to
mimic them via polymeric compounds. Gibson et al.
developed CPAs based on synthetic polymers by utilizing
the inhibitory effect on ice crystal formation [32, 33]. For
example, by changing the degree of saponification and
degree of polymerization of PVA, which has many
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hydroxyl groups with high binding affinities for ice crystal
surfaces, they developed a polymer with a high inhibitory
effect on ice recrystallization and used it for the cryopro-
tection of red blood cells [32]. The strong IRI activity is
reported to be caused by hydrogen bonds between PVA and
ice, which increases the enthalpic gains and raises the
entropic factor as a result of the desolvation of the methy-
lene groups of PVA [34].

Ben et al. chemically modified an AFP and succeeded in
enhancing the cryoprotection of cells [35]. As the formation
of ice crystals causes physical damage to cells, it is clear
that the inhibition of ice crystal formation plays an impor-
tant role in cell viability during freezing. The inhibition of
recrystallization during thawing is also necessary, and there
are reports that high survival rates have been obtained even
under slow thawing conditions with the addition of PVA
[33]. The addition of PVA to erythrocyte suspensions

suppressed ice crystal growth during freezing and thawing,
and hemolysis was suppressed relative to that in the system
with no PVA added (buffer alone; Fig. 2). However, the
authors of some studies have reported no cryoprotective
effect of AFP, and the cryoprotective effect cannot be
explained by the inhibition of ice crystal formation and
growth alone [36].

The cell membrane protection effect is important for
preventing damage to the membrane caused by ice crystals
when the cells are frozen. For example, trehalose polymers
have been synthesized to enhance the water-substitution
effect of trehalose [37, 38]. In addition to the inhibition of
ice crystal formation, cell membranes are reported to con-
tribute significantly to cell cryopreservation.

Rajan et al. used electron spin resonance to confirm that
the introduction of alkyl chains to polyampholytes (Fig. 1,
structures 2 and 3) enhances their interaction with cell

Fig. 1 The structures of various polymeric cryoprotectants are listed in Table 1
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membranes and reported a relationship between hydro-
phobicity and protective effects (Fig. 3) [39]. Stöver et al.
reported an improvement in the protective activity of
polyampholytes in which a hydrophobic t-butanol group
was introduced [40]. Moreover, the introduction of hydro-
phobicity was found to enhance the recrystallization inhi-
bitory effect, which may have a synergistic effect of
preventing ice crystal damage in the vicinity of the cell
membrane.

Proposed mechanism—intracellular ice
crystal inhibition effect

Intracellular ice crystal formation is a problem that should
be considered when freezing cells. Intracellular ice crystals
are reported to cause irreversible damage to intracellular
organelles, resulting in cell death. Cell membrane-
permeable CPAs such as DMSO are thought to inhibit ice
crystal formation and reduce ice crystal size by penetrating
cells and replacing water. Moreover, most polymeric CPAs
do not penetrate cell membranes [12]. Our group showed
that carboxylated polylysine (carboxylated poly-L-lysine,
COOH-PLL) has a cell cryoprotective effect. However, the
mechanism of this effect has not been clarified. In 2021, we
reported that the regulation of cell dehydration is an
important mechanism for the inhibition of intracellular ice
crystal formation [41].

The mobility of water molecules and salt ions in aqueous
solutions of COOH-PLL between 0 and –41 °C was eval-
uated using solid-state NMR measurements. The results
showed that the mobility of water at low temperatures was
significantly suppressed and the viscosity increased in the
COOH-PLL solution compared to other polymers or DMSO
solutions. Under freezing conditions, the polymer solution
surrounding the cell has a high viscosity, suggesting that it
inhibits the formation of intracellular ice crystals through
the penetration of ice crystals into the cell. The polymer
chains trap Na ions and reduce their mobility at low tem-
peratures (Fig. 4a). This reduces the concentration of Na
ions that contribute to osmotic pressure, suppressing rapid
dehydration and achieving optimal conditions for sufficient
intracellular dehydration under mild conditions, suggesting
that the formation of intracellular ice crystals is suppressed
(Fig. 4b). Lynd et al. reported a polymeric protectant that
inhibits intracellular ice crystal formation by successfully
controlling cell dehydration [42], an interesting finding that
may guide the molecular design of future CPAs.

This effect can be described as the inhibition of crys-
tallization because the increase in viscosity due to the
enhanced interaction between the polymer and water at low
temperatures inhibits the molecular motion of water.
Therefore, designing the structure of the side chains and
main chains of polymers may contribute to greater ice
crystallization inhibition and enhanced dehydration. For
example, we have reported that the addition of similar

Table 1 Cryoprotective outcomes using various polymer cryoprotectants

Structure Name Cell type Cell
viability/%

Polymer
concentration/%

Other CPAsa Ref

1 COOH-PLL L292, MSCs ~95 7.5 None [12]

2 DMAEMA-MAA L929 ~90 15 None [15]

3 DMAEMA-MAA-BuMA L929 ~95 10 None [15, 39]

4 Poly-SPB L929 ~70 15 None [39]

5 MVE-MA(NH2) A549 50 2 5% DMSOb [58]

6 Poly(DEGMA113-b-PMPC243-
b-PDEGMA113)

CHO, PC3, HeLa, FaDu,
Fibroblasts, K562, W138

~95 3–15 None [59]

7 Poly(D/L-serine) Red blood cells 50 6 None [60]

8 Poly(methyl glycidyl
sulfoxide)

3T3, Fibroblasts 60–80 10 None [42]

9 PVAc Red blood cells 60 0.1 21.5% HESd [32]

10 poly(sulfobetaine
methacrylate)

Chondrocytes 80 1 4% betaine [61]

11 Trehalose polymer HeLa. Fibroblasts 90 5–10 10% DMSO+ 0.5 M
trehalose

[37]

12 PL-g-Mal(III) glycopeptide Erythrocytes 74 0.4 0.36M trehalose [62]

aCryoprotectant.
bDimethylsulfoxide.
cPolyvinyl alcohol.
dHydroxyethyl starc.
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zwitterionic polymers suppresses the thermal aggregation of
proteins [43, 44], and we believe that the protective effect of
dehydration inhibition is also involved. In conclusion, we
have outlined the role of structurally engineered polymer
CPAs in the new field of cryobiology.

Cryobiology and polymer materials science
of intracellular substance transport by
freeze concentration

It was long believed that the application of cryopreservation
was limited to preserving biological specimens only. How-
ever, recent reports reveal that this technology can be useful
in a multitude of fields, ranging from cryobiology to poly-
mer chemistry and materials science (biomaterials) research.

The intracellular transport of substances has attracted
much attention as a drug delivery technique [45]. The cell
membrane acts as a barrier between the inside and outside

of the cell and prevents the permeation of various sub-
stances. For example, to introduce nucleic acids into cells
for gene therapy, a complex must be formed with cationic
phospholipids or polymers that interact with the negative
charge of the nucleic acids [46]. In addition, cationic
vehicles are generally highly cytotoxic, so molecular design
is important. The cellular delivery of proteins is also useful
for the intracellular expression of protein drug effects and
immunotherapy by antigen delivery. For such intracellular
transfection, it is necessary to devise a way for the cargo to
escape from endosomes to prevent degradation by endo-
somes and lysosomes after uptake by cells through endo-
cytosis [47]. However, methods of cytoplasmic
translocation that do not involve endosomes, such as
membrane-permeable peptides, have also been developed
[48]. In addition, the introduction of medium-sized mole-
cular drugs such as oligopeptides into cells for the control of
protein–protein interactions has recently attracted con-
siderable interest [49].

Freeze concentration

In the food industry, concentration and reduction are com-
monly used to prepare juices and other products. However,
the aromatic components evaporate during the drying pro-
cess. This has led to the development of the freeze-
concentration method [50, 51]. This method increases the
concentration of juice through the exclusion of solute from
the ice crystals that are formed when an aqueous solution is
slowly frozen, thereby concentrating the remaining water.
After freezing, the concentrated liquid can be extracted by
slow thawing so that the concentrated portion dissolves first.
For example, when a pH 5 solution of bromophenol blue
solution, a pH indicator, is frozen, the blue color indicating
pH 5 shifts toward of the color indicating pH 3, as shown in
Fig. 5. This indicates that the protons have been con-
centrated 100-fold. This technique has also been used to
promote chemical reactions that are concentration depen-
dent. For example, click chemistry and the improvement of
the reactivity between polymers and small nucleic acids by
freezing have been reported [52]. Miyawaki et al. reported
that this freeze-concentration effect can be easily obtained
from the melting point [53].

Theoretically, the freeze-concentration factor, α, which
represents the degree of concentration by freezing, is related
to the freezing-point depression and was estimated from the
analysis of the fraction of frozen water.

Specifically, the freeze-concentration factor (α) is
described as

α ¼ freezable water

unfrozen water
¼ Ffw

Ffw � Ff
ð1Þ

Fig. 2 Cryopreservation of cells using poly(vinyl alcohol) (PVA).
a Solvent-free red blood cell cryopreservation upon addition of
1 mg mL−1 PVA. Micrographs show recovered intact red blood cells;
(b) somatic cell recovery postthaw in PVA/dimethyl sulfoxide
(DMSO) mixtures. Reproduced with permission from ref. [33], under
Creative Commons CC-BY license
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where Ff is the fraction of frozen water in the total water (g of
frozen water/g of total water), and Ffw is the fraction of
freezable water determined by the equation

Ffw ¼ Xw � Xuf

Xw
ð2Þ

where Xw is the water content (g of water/g of total mass)
and Xuf is the unfreezable water content (g of water/g of
total mass).

The Xuf was measured using differential scanning
calorimetry, and the fraction of frozen water in the freezable
water (g of frozen water/g of freezable water) at a
particular temperature T (°C) is described by the following
equation.

Ff

Ffw
¼ 1� Tf

T

� �
ð3Þ

where Tf is the freezing point of the system (°C).

Fig. 4 a Temperature dependence of Na-ion signal intensities. The
relative intensity values of the polymer solution in (a) above−15 C are
connected by dotted lines because the two components are not easily
separated and there is a large degree of variation. Error bars represent

the standard deviation. b Schematic illustration of the mechanism of
cryoprotection by COOH-PLL (PLL-(0.65)). Reproduced with per-
mission from ref. [41], under Creative Commons CC-BY license

Fig. 3 a Synthesis of poly-(MAA and DMAEMA), poly-SPB, poly-
CMB, and hydrophobic derivatives of polyampholytes by RAFT
polymerization. b Cryoprotective properties of poly(MAA-
DMAEMA), poly-SPB, and poly-CMB with different OcMA con-
centrations at a constant polymer concentration of 10%. L929 cells

were cryopreserved with different polyampholytes at various con-
centrations. Data are expressed as the mean ± SD for three independent
experiments (five samples each). ***P < 0.001. c Schematic repre-
sentation of membrane–polyampholyte interaction/localization.
Reproduced with permission from ref. [39]
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The unfrozen water fraction in the freezable water can be
obtained using

Ffw � Ff

Ffw
¼ Tf

T
: ð4Þ

After combining Eqs. (1) and (4), a simple equation for
determining the temperature-dependent freeze-concentra-
tion factor with only one parameter, Tf, can be derived as
follows:

α ¼ T

Tf
: ð5Þ

From these equations, we determined the freeze-
concentration factor of a cell suspension with 10% DMSO
as a CPA and 10% COOH-PLL, as described above (Fig. 6)
[54]. Notably, the freeze-concentration factor was clearly
higher for the polymeric system than for the DMSO system.
This is because the molar concentration of the polymeric
system is lower, and therefore, freezing-point depression is
less likely to occur and the degree of concentration is higher,
as indicated by the calculation results. Therefore, our poly-
meric CPA can dramatically increase the concentration of
solute in the remaining solution around the cell.

For the intracellular introduction of proteins, we loaded
the proteins onto polymeric nanoparticles and liposomes
with high affinities for cell membranes and allowed them to
adsorb onto the cell membranes via freeze concentration
[19, 20]. The liposomes were coated with polyampholytes
to allow their escape from the endosomes after cellular
uptake. For example, liposomes encapsulated with
fluorescent-labeled lysozymes were added to a cell sus-
pension, frozen as a CPA, and then thawed. Lysozyme was
adsorbed onto a large area of the cell surface simply by
freezing. After 24 h, the migration of proteins into the cells
was confirmed (Fig. 7a). Escape most likely occurred
because liposomes coated with polyampholytes aggregated
in the favorable pH environment in the endosomes, desta-
bilizing the membrane (Fig. 7b). Thus, we have reported a
simple technique for freeze-thawing that allows macro-
phages to efficiently ingest antigens [55], introduce genes
[56], and perform cell imaging by introducing quantum dots

[57]. This method is inexpensive, novel, and does not
require special equipment.

Conclusions and future perspectives

In summary, we have reviewed research across two fields
and discussed the solutions to problems in cryobiology from
the viewpoint of polymeric materials science and the
applications of polymer-based cryobiology for biomedical
applications.

The advantage of polymer-based CPAs is that the
molecular weight, steric structure, and side-chain structure
can be controlled, making it possible to optimize the
functions associated with structural changes. For example, it
is easy to form a hydrogel by cross-linking, and the use of
hydrogels as scaffolds for cell cultures after thawing has
been reported. Although polymers (especially poly-
ampholytes) have been used to advance technology over the
past few decades, the field of polymer-based CPAs is still in
its infancy, and more attention and focused research are

Fig. 6 Estimation of the freezing point (Tf) and freeze concentration
factor (α) during freezing. a Determination of the freezing point of
10% DMSO with or without the protein–nanocarrier complex, 10%
COOH-PLL with or without the protein–nanocarrier complex, and the
protein–nanocarrier complex without cryoprotectant. b On the basis of
the freezing point of the respective samples, the freeze concentration
factor (α) was calculated at the following temperatures: 0, −3, −5, −7,
−9, −11, −15, −17, −19, and −20 °C. The graph shows the freeze
concentration factor plotted against temperature. Data are expressed as
the mean ± SD, **p < 0.01. Reproduced with permission from ref. [54]

Fig. 5 Freeze concentration of bromophenol blue solution. The color
change indicated that protons were concentrated 100 times by simple
freezing
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required to address the current drawbacks and hasten the
widespread application of polymer-based CPAs. The opti-
mization of molecules by molecular dynamics simulation
has been studied, and it is expected that new research fields,
such as the creation of new data-driven CPAs through
machine learning, will evolve in the future.

Currently, the boundaries between research fields are less
clear, and exchanges between researchers from different
fields have opened up new pathways for research that would
have been unthinkable without cross-disciplinary colla-
boration. It is exciting to see new academic fields evolve as
a result of bringing together knowledge from different
fields.
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Fig. 7 Confocal
microphotographs of L929 cells.
a The images show that lysozyme
protein internalization occurs via
endocytosis during culture after
being frozen with lysozyme-
loaded modified liposomes using
10% COOH-PLL as a
cryoprotectant. (upper)
Unmodified liposomes; (lower)
polyampholyte-modified
liposomes. Scale bars: 50 μm.
b Intracellular delivery of TR-
labeled lysozymes in L929 cells.
We cryopreserved 1 × 106 cells
with the polymeric cryoprotectant
COOH-PLL and protein-
containing liposomes. The cells
were thawed and seeded for 12 h
at 37 °C. After incubation, the
endosomes/lysosomes and nuclei
were stained with LysoTracker
Green and Hoechst blue 33258,
respectively. (left) Unmodified
liposomes. (right) Polyampholyte-
modified liposomes. Scale bar:
10 μm. Reproduced with
permission from ref. [20]
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