Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effects of different types of maleic anhydride-modified polypropylene on the interfacial shear strengths of carbon fiber-reinforced polypropylene composites

Abstract

Herein, the effects of three maleic anhydride-modified polypropylene (MAPP) specimens with different MA contents and crystallinities on the interfacial shear strengths (IFSSs) of PP and carbon fiber (CF) were investigated and compared by using microdroplet tests. The IFSS values showed little dependence on the MA content of the MAPP. Localization of the MAPP at the interphase was shown experimentally, which indicated sufficient chemical interactions involving covalent bonds and hydrogen bonds at the interface regardless of the MA content. When the chemical interactions at the interface are sufficient, the IFSS values are attributed to the crystallinity at the interphase. The crystallinity at the interphase depends on the crystallinity of the MAPP added, and higher crystallinity resulted in a higher IFSS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alshammari BA, Alsuhybani MS, Almushaikeh AM, Alotaibi BM, Alenad AM, Alqahtani NB, et al. Comprehensive review of the properties and modifications of carbon fiber-reinforced thermoplastic composites. Polymers. 2021;13:2474.

    Article  CAS  Google Scholar 

  2. Yao SS, Jin FL, Rhee KY, Hui D, Park SJ. Recent advances in carbon-fiber-reinforced thermoplastic composites: A review. Compos Part B: Eng. 2018;142:241–50.

    Article  CAS  Google Scholar 

  3. Ali Z, Gao Y, Tang B, Wu X, Wang Y, Li M, et al. Preparation, properties and mechanisms of carbon fiber/polymer composites for thermal management application. Polymers 2021;13:169.

    Article  CAS  Google Scholar 

  4. Maddah HA. Polypropylene as a promising plastic: A review. Am J Polym Sci. 2016;6:1–11.

    CAS  Google Scholar 

  5. Terada K. Carbon fiber reinforced thermo plastics-currently, applications and forecast. J Jpn Soc Precis Eng. 2015;81:485–8.

    Article  Google Scholar 

  6. Rezaei F, Yunus R, Ibrahim NA. Effect of fiber length on thermomechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des. 2009;30:260–3.

    Article  CAS  Google Scholar 

  7. Katogi H, Takemura K. The effect of crystallinity on the mechanical properties of plain woven carbon reinforced composites using polypropylene. WIT Trans. Built Environ. 2014;137:301–9.

    Google Scholar 

  8. Hirano N, Muramatsu H, Inoue T. Research of fiber length and fiber-matrix adhesion in carbon fiber reinforced polypropylenes. J Jpn Soc. Compos Mater. 2013;39:113–9.

    CAS  Google Scholar 

  9. Karsli NG, Aytac A. Effects of maleated polypropylene on the morphology, thermal and mechanical properties of short carbon fiber reinforced polypropylene composites. Mater Des. 2011;32:4069–73.

    Article  CAS  Google Scholar 

  10. Motozuka S, Hashimoto R, Tagaya M, Kobayashi T. Surface functionalization of carbon fibers and the composite techniques with polymers. Kobunshi Ronbunshu. 2013;70:242–52.

    Article  Google Scholar 

  11. Brandl W, Marginean G, Chirila V, Warschewski W. Production and characterisation of vapour grown carbon fiber/polypropylene composites. Carbon 2004;42:5–9.

    Article  CAS  Google Scholar 

  12. Unterweger C, Duchoslav J, Stifter D, Fürst C. Characterization of carbon fiber surfaces and their impact on the mechanical properties of short carbon fiber reinforced polypropylene composites. Compos Sci Technol. 2015;108:41–7.

    Article  CAS  Google Scholar 

  13. Zhang X, Pei X, Jia Q, Wang Q. Effects of carbon fiber surface treatment on the tribological properties of 2D woven carbon fabric/polyimide composites. Appl Phys A. 2009;95:793–9.

    Article  CAS  Google Scholar 

  14. Liu Y, Zhang X, Song C, Zhang Y, Fang Y, Yang B, et al. An effective surface modification of carbon fiber for improving the interfacial adhesion of polypropylene composites. Mater Des. 2015;88:810–9.

    Article  CAS  Google Scholar 

  15. Li JS, Zhang CR, Li B. Preparation and characterization of boron nitride coatings on carbon fibers from borazine by chemical vapor deposition. Appl Surf Sci. 2011;257:7752–7.

    Article  CAS  Google Scholar 

  16. Cai G, Wada M, Ohsawa I, Kitaoka S, Takahashi J. Interfacial adhesion of recycled carbon fibers to polypropylene resin: Effect of superheated steam on the surface chemical state of carbon fiber. Compos Part A: Appl Sci Manuf. 2019;120:33–40.

    Article  CAS  Google Scholar 

  17. Tanaka K, Okuda S, Katayama T. Effect of air oxidation of carbon fiber on interfacial shear strength of carbon fiber reinforced thermoplastics. J Soc Mat Sci Jpn. 2020;69:358–64.

    Article  CAS  Google Scholar 

  18. Kim HI, Han W, Choi WK, Park SJ, An KH, Kim BJ. Effects of maleic anhydride content on mechanical properties of carbon fibers-reinforced maleic anhydride-grafted-poly-propylene matrix composites. Carbon Lett. 2016;20:39–46.

    Article  Google Scholar 

  19. Wong KH, Mohammed DS, Pickering SJ, Brooks R. Effect of coupling agents on reinforcing potential of recycled carbon fibre for polypropylene composite. Compos Sci Technol. 2012;72:835–44.

    Article  CAS  Google Scholar 

  20. Li M, Wen X, Liu J, Tang T. Synergetic effect of epoxy resin and maleic anhydride grafted polypropylene on improving mechanical properties of polypropylene/short carbon fiber composites. Compos Part A: Appl Sci Manuf. 2014;67:212–20.

    Article  CAS  Google Scholar 

  21. Kim JS, Kim DH. Compatibilizing effects of maleic anhydride-grafted-polypropylene (PP) on long carbon fiber-reinforced PP composites. J Thermoplast Compos Mater. 2015;28:1599–611.

    Article  CAS  Google Scholar 

  22. Yamaguchi A, Hashimoto T, Uematsu H, Urushisaki M, Sakaguchi T, Takamura A, et al. Investigation of interfacial adhesion of telechelic polypropylenes for carbon fiber-reinforced plastics. Polym J. 2020;52:413–9.

    Article  CAS  Google Scholar 

  23. Uematsu H, Nishimura S, Yamaguchi A, Yamane M, Ozaki Y, Tanoue S. Growth of polypropylene crystals in the vicinity of carbon fibers and improvement of their interfacial shear strength. Polym J. 2022;54:667–77.

    Article  CAS  Google Scholar 

  24. Gulrez SKH, Mohsin MEA, Al-Zahrani SM. Studies on crystallization kinetics, microstructure and mechanical properties of different short carbon fiber reinforced polypropylene (SCF/PP) composites. J Polym Res. 2013;20:265.

    Article  Google Scholar 

  25. Piao H, Fujita M, Ohsawa I, Takahashi J. Experimental and numerical study on the interfacial properties of CFRTP in micro-droplet test. 21st International Conference on Composite Materials. Xi’an. August 2017.

  26. Dudić D, Djoković V, Kostoski D. The high temperature secondary crystallisation of aged isotactic polypropylene. Polym Test. 2004;23:621–7.

    Article  Google Scholar 

  27. Kim HS, Lee BH, Choi SW, Kim S, Kim HJ. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos Part A: Appl Sci Manuf. 2007;38:1473–82.

    Article  Google Scholar 

  28. Kazayawoko M, Balatinecz JJ, Woodhams RT. Diffuse reflectance Fourier transform infrared spectra of wood fibers treated with maleated polypropylenes. J Appl Polym Sci. 1997;66:1163–73.

    Article  CAS  Google Scholar 

  29. Yang L, Thomason JL. Interface strength in glass fibre-polypropylene measured using the fibre pull-out and microbond methods. Compos Part A: Appl Sci Manuf. 2010;41:1077–83.

    Article  Google Scholar 

  30. Nakanishi Y, Ikuta N. Interphase of FRP and its chemical control. J Soc Mat Sci Jpn. 1996;45:1307–15.

    Article  CAS  Google Scholar 

  31. Watanabe R, Sugahara A, Hagihara H, Mizukado J, Shinzawa H. Insight into interfacial compatibilization of glass-fiber-reinforced polypropylene (PP) using maleic-anhydride modified PP employing infrared spectroscopic imaging. Compos Sci Technol. 2020;199:108379.

    Article  CAS  Google Scholar 

  32. Uematsu H, Sudo K, Eguchi T, Yamaguchi A, Hirata T, Koori Y, et al. Improvement of interfacial shear strength between syndiotactic polystyrene and carbon fiber by self-localization of acid modified poly (2,6-dimethyl-1,4-phenylene ether) on the surface of carbon fiber. Compos Part A: Appl Sci Manuf. 2022;153:106706.

    Article  CAS  Google Scholar 

  33. Nielsen AS, Batchelder DN, Pyrz R. Estimation of crystallinity of isotactic polypropylene using Raman spectroscopy. Polymer 2002;43:2671–6.

    Article  CAS  Google Scholar 

  34. Minogianni C, Gatos KG, Galiotis C. Estimation of crystallinity in isotropic isotactic polypropylene with Raman spectroscopy. Appl Spec. 2005;59:1141–7.

    Article  CAS  Google Scholar 

  35. Hiejima Y, Takeda K, Nitta K. Investigation of the molecular mechanism of melting and crystallization of isotactic polypropylene by in situ Raman spectroscopy. Macromolecules 2017;50:5867–76.

    Article  CAS  Google Scholar 

  36. Vetter M, Healy MJF, Lane DW. Investigating electric field induced molecular distribution in polypropylene using Raman spectroscopy. Polym Test. 2020;92:106851.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Riken Vitamin Co., Ltd. (Tokyo, Japan) for supplying MAPP2 and Dr. Daisuke Sasaki and Mr. Atsushi Takamura of San-ei Kogyo Co. (Saitama, Japan) for providing MAPP3. This research was supported by JSPS KAKENHI (Grant number JP 21H04116).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayaka Yamaguchi or Tamotsu Hashimoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, A., Urushisaki, M., Uematsu, H. et al. Effects of different types of maleic anhydride-modified polypropylene on the interfacial shear strengths of carbon fiber-reinforced polypropylene composites. Polym J 55, 153–161 (2023). https://doi.org/10.1038/s41428-022-00733-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00733-w

This article is cited by

Search

Quick links