Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Macromolecular architectures constructed by biscalix[5]arene–[60]fullerene host–guest interactions

Abstract

This focus review is designed to summarize the development of macromolecular architectures formed via biscalix[5]arene–[60]fullerene host–guest interactions. Biscalix[5]arene–fullerene host–guest complexation leads to various macromolecular architectures, including block polymers, star-shaped polymers, cross-linked polymers, and one-handed helical polymers, and host–guest complexation is not prevented by the long polymer chains owing to the high binding affinity between biscalix[5]arene and fullerene. These macromolecular architectures exhibited state-switching natures in response to environmental stimuli. Notably, one of them displayed behavior concordant with those of corresponding covalently linked polymers, including solution viscosity and thermal properties, even though the structures were maintained by relatively weak noncovalent interactions. These demonstrations indicate that biscalix[5]arene–[60]fullerene host–guest interactions can be used to create supramolecularly connected macromolecular architectures that can convert between assembled and disassembled states because of the dynamic nature of noncovalent interactions.

This focus review is designed to summarize the development of macromolecular architectures formed via biscalix[5]arene–[60]fullerene host–guest interactions. The preparation and dynamic nature of various macromolecular architectures, including block polymers, star-shaped polymers, cross-linked polymers, and one-handed helical polymers, are discussed. These macromolecular architectures exhibited state-switching natures in response to environmental stimuli due to the dynamic nature of noncovalent interactions. These demonstrations underscore that biscalix[5]arene–[60]fullerene host–guest interactions can be used to create supramolecularly connected macromolecular architectures that can convert between assembled and disassembled states.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Hoogenboom R, Fournier D, Schubert US. Asymmetrical supramolecular interactions as basis for complex responsive macromolecular architectures Chem Commun. 2008;44:155–62.

    Google Scholar 

  2. Fox JD, Rowan SJ. Supramolecular polymerizations and main-chain supramolecular polymers. Macromolecules. 2009;42:6823–35.

  3. Xia D, Wang P, Ji X, Khashab NM, Sessler JL, Huang F. Functional supramolecular polymeric networks: the marriage of covalent polymers and macrocycle-based host–guest interactions. Chem Rev. 2020;120:6070–123.

    Article  CAS  Google Scholar 

  4. Folmer BJB, Sijbesma RP, Versteegen RM, van der Rijt JAJ, Meijer EW. Supramolecular polymer materials: chain extension of telechelic polymers using a reactive hydrogen-bonding synthon. Adv Mater. 2000;12:874–8.

    Article  CAS  Google Scholar 

  5. Shokrollahi P, Mirzadeh H, Huck WTS, Scherman OA. Effect of self-complementary motifs on phase compatibility and material properties in blends of supramolecular polymers. Polymer. 2010;51:6303–12.

  6. Appel EA, del Barrio J, Loh XJ, Scherman OA. Supramolecular polymeric hydrogels. Chem Soc Rev. 2012;41:6195–214.

    Article  CAS  Google Scholar 

  7. van Gemert GML, Peeters JW, Söntjens SHM, Janssen HM, Bosman AW. Self-healing supramolecular polymers in action. Macromol Chem Phys. 2012;213:234–42.

    Article  Google Scholar 

  8. Gyarmati B, Szilágyi BÁ, Szilágyi A. Reversible interactions in self-healing and shape memory hydrogels. Eur Polym J. 2017;93:642–69.

    Article  CAS  Google Scholar 

  9. Yanagisawa Y, Nan Y, Okuro K, Aida T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science. 2018;359:72–6.

  10. Sinawang G, Osaki M, Takashima Y, Yamaguchi H, Harada A. Supramolecular self-healing materials from non-covalent cross-linking host–guest interactions. Chem Commun. 2020;56:4381–95.

    Article  CAS  Google Scholar 

  11. Wang H, Liu H, Cao Z, Li W, Huang X, Zhu Y, et al. Room-temperature autonomous self-healing glassy polymers with hyperbranched structure. Proc Natl Acad Sci USA. 2020;117:11299–305.

    Article  CAS  Google Scholar 

  12. Mohamadhoseini M, Mohamadnia Z. Supramolecular self-healing materials via host-guest strategy between cyclodextrin and specific types of guest molecules. Coord Chem Rev. 2021;432:213711.

    Article  CAS  Google Scholar 

  13. Ikura R, Park J, Osaki M, Yamaguchi H, Harada A, Takashima Y. Design of self-healing and self-restoring materials utilizing reversible and movable crosslinks. NPG Asia Mater. 2022;14:10.

  14. Nakahata M, Takashima Y, Yamaguchi H, Harada A. Redox-responsive self-healing materials formed from host–guest polymers. Nat Commun. 2011;2:511.

    Article  Google Scholar 

  15. Takashima Y, Harada A. Stimuli-responsive polymeric materials functioning via host–guest interactions. J Incl Phenom Macro. 2017;88:85–104.

  16. Takata T, Aoki D. Topology-transformable polymers: linear–branched polymer structural transformation via the mechanical linking of polymer chains. Polym J. 2018;50:127–47.

    Article  CAS  Google Scholar 

  17. McCune JA, Mommer S, Parkins CC, Scherman OA. Design principles for aqueous interactive materials: lessons from small molecules and stimuli-responsive systems. Adv Mater. 2020;32:1906890.

    Article  CAS  Google Scholar 

  18. Takata T. Switchable polymer materials controlled by rotaxane macromolecular switches. ACS Cent Sci. 2020;6:129–43.

  19. Chu C-W, Schalley CA. Recent advances on supramolecular gels: from stimuli-responsive gels to co-assembled and self-sorted systems. Org Mater. 2021;3:25–40.

  20. Han W, Xiang W, Li Q, Zhang H, Yang Y, Shi J, et al. Water compatible supramolecular polymers: recent progress. Chem Soc Rev. 2021;50:10025–43.

    Article  CAS  Google Scholar 

  21. Harada A, Takashima Y, Hashidzume A, Yamaguchi H. Supramolecular polymers and materials formed by host-guest interactions. Bull Chem Soc Jpn. 2021;94:2381–9.

    Article  CAS  Google Scholar 

  22. Kobayashi Y. Precise synthesis of polyrotaxane and preparation of supramolecular materials based on its mobility. Polym J. 2021;53:505–13.

    Article  CAS  Google Scholar 

  23. Rebek J. Assembly and encapsulation with self-complementary molecules. Chem Soc Rev. 1996;25:255–64.

    Article  CAS  Google Scholar 

  24. Baruah PK, Khan S. Self-complementary quadruple hydrogen bonding motifs: from design to function. RSC Adv. 2013;3:21202–17.

  25. Hisano N, Hirao T, Haino T. Self-complementary structure of bisporphyrin dimer. Chem Lett. 2021;50:1844–7.

    Article  CAS  Google Scholar 

  26. Aoshima S, Kanaoka S. A renaissance in living cationic polymerization. Chem Rev. 2009;109:5245–87.

    Article  CAS  Google Scholar 

  27. Rempp P, Lutz P, Masson P, Chaumont P. Macromonomers: a new class of polymeric intermediates in macromolecular synthesis – II – homo- and copolymerization. Die Makromolekulare Chemie 1985;13:47–66.

  28. Verduzco R, Li X, Pesek SL, Stein GE. Structure, function, self-assembly, and applications of bottlebrush copolymers. Chem Soc Rev. 2015;44:2405–20.

    Article  CAS  Google Scholar 

  29. Roovers JEL, Bywater S. Preparation and characterization of four-branched star polystyrene. Macromolecules. 1972;5:384–8.

  30. Ren JM, McKenzie TG, Fu Q, Wong EHH, Xu J, An Z, et al. Star polymers. Chem Rev. 2016;116:6743–836.

    Article  CAS  Google Scholar 

  31. Leibler L. Theory of microphase separation in block copolymers. Macromolecules. 1980;13:1602–17.

  32. Russell TP, Chai Y. 50th anniversary perspective: putting the squeeze on polymers: a perspective on polymer thin films and interfaces. Macromolecules. 2017;50:4597–609.

  33. Shin JJ, Kim EJ, Ku KH, Lee YJ, Hawker CJ, Kim BJ. 100th anniversary of macromolecular science viewpoint: block copolymer particles: tuning shape, interfaces, and morphology. ACS Macro Lett. 2020;9:306–17.

  34. Tezuka Y, Fujiyama K. Construction of polymeric δ-graph: a doubly fused tricyclic topology. J Am Chem Soc. 2005;127:6266–70.

    Article  CAS  Google Scholar 

  35. Jia Z, Lonsdale DE, Kulis J, Monteiro MJ. Construction of a 3-Miktoarm star from cyclic polymers. ACS Macro Lett. 2012;1:780–3.

  36. Isono T, Satoh Y, Miyachi K, Chen Y, Sato S-i, Tajima K, et al. Kakuchi synthesis of linear, cyclic, figure-eight-shaped, and tadpole-shaped amphiphilic block copolyethers via t-Bu-P4-catalyzed ring-opening polymerization of hydrophilic and hydrophobic glycidyl ethers. Macromolecules. 2014;47:2853–63.

  37. Jeong J, Kim K, Lee R, Lee S, Kim H, Jung H, et al. Paik preparation and analysis of bicyclic polystyrene. Macromolecules. 2014;47:3791–6.

  38. Wang S, Zhang K, Chen Y, Xi F. Isomeric dicyclic polymers via atom transfer radical polymerization and atom transfer radical coupling cyclization. Macromolecules. 2014;47:1993–8.

  39. Tomikawa Y, Yamamoto T, Tezuka Y. Construction of hybrid-multicyclic polymer topologies composed of dicyclic structure units by means of an ESA-CF/click-linking protocol. Macromolecules. 2016;49:4076–87.

  40. Cram DJ, Cram JM. Host-guest chemistry: complexes between organic compounds simulate the substrate selectivity of enzymes. Science. 1974;183:803–9.

  41. Schmidtchen FP, Berger M. Artificial organic host molecules for anions. Chem Rev. 1997;97:1609–46.

    Article  CAS  Google Scholar 

  42. Han Y, Tian Y, Li Z, Wang F. Donor–acceptor-type supramolecular polymers on the basis of preorganized molecular tweezers/guest complexation. Chem Soc Rev. 2018;47:5165–76.

    Article  CAS  Google Scholar 

  43. Ohtani S, Kato K, Fa S, Ogoshi T. Host–huest chemistry based on solid-state pillar[n]arenes. Coord Chem Rev. 2022;462:214503.

    Article  CAS  Google Scholar 

  44. Altintas O, Gerstel P, Dingenouts N, Barner-Kowollik C. Single chain self-assembly: preparation of α,ω-donor–acceptor chains via living radical polymerization and orthogonal conjugation. Chem Commun. 2010;46:6291–3.

    Article  CAS  Google Scholar 

  45. Schmidt BVKJ, Rudolph T, Hetzer M, Ritter H, Schacher FH, Barner-Kowollik C. Supramolecular three-armed star polymers via cyclodextrin host–guest self-assembly. Polym Chem. 2012;3:3139–45.

    Article  CAS  Google Scholar 

  46. Zhang Z-X, Liu KL, Li J, Thermoresponsive A. Hydrogel formed from a star–star supramolecular architecture. Angew Chem Int Ed. 2013;52:6180–4.

    Article  CAS  Google Scholar 

  47. Schmidt BVKJ, Kugele D, von Irmer J, Steinkoenig J, Mutlu H, Rüttiger C, et al. Dual-gated supramolecular star polymers in aqueous solution. Macromolecules. 2017;50:2375–86.

  48. Tsunoda Y, Takatsuka M, Sekiya R, Haino T. Supramolecular graft copolymerization of a polyester by guest-selective encapsulation of a self-assembled capsule. Angew Chem Int Ed. 2017;56:2613–8.

    Article  CAS  Google Scholar 

  49. Nitta N, Takatsuka M, Kihara S-i, Sekiya R, Haino T. Facile synthesis of an eight-armed star-shaped polymer via coordination-driven self-assembly of a four-armed cavitand. ACS Macro Lett. 2018;7:1308–11.

  50. Trauner D. The chemist and the architect. Angew Chem Int Ed. 2018;57:4177–91.

    Article  CAS  Google Scholar 

  51. Fuertes-Espinosa C, Pujals M, Ribas X. Supramolecular purification and regioselective functionalization of fullerenes and endohedral metallofullerenes. Chem. 2020;6:3219–62.

  52. Ji X, Wang H, Wang H, Zhao T, Page ZA, Khashab NM, et al. Removal of organic micropollutants from water by macrocycle‐containing covalent polymer networks. Angew Chem Int Ed. 2020;59:23402–12.

    Article  CAS  Google Scholar 

  53. Li A, Zhai H, Li J, He Q. Practical applications of supramolecular extraction with macrocycles. Chem Lett. 2020;49:1125–35.

    Article  CAS  Google Scholar 

  54. Luo D, Tian J, Sessler JL, Chi X. Nonporous adaptive calix[4]pyrrole crystals for polar compound separations. J Am Chem Soc. 2021;143:18849–53.

    Article  CAS  Google Scholar 

  55. Luo D, He Y, Tian J, Sessler JL, Chi X. Reversible iodine capture by nonporous adaptive crystals of a bipyridine cage. J Am Chem Soc. 2022;144:113–7.

    Article  CAS  Google Scholar 

  56. Xiong S, Nanda Kishore MV, Zhou W, He Q. Recent advances in selective recognition of fluoride with macrocyclic receptors. Coord Chem Rev. 2022;461:214480.

    Article  CAS  Google Scholar 

  57. Nguyen BT. Anslyn indicator–displacement assays. Coord Chem Rev. 2006;250:3118–27. E. V

    Article  CAS  Google Scholar 

  58. Wright AT, Anslyn EV. Differential receptor arrays and assays for solution-based molecular recognition. Chem Soc Rev. 2006;35:14–28.

    Article  CAS  Google Scholar 

  59. Wu J, Kwon B, Liu W, Anslyn EV, Wang P, Kim JS. Chromogenic/fluorogenic ensemble chemosensing systems. Chem Rev. 2015;115:7893–943.

    Article  CAS  Google Scholar 

  60. Wu D, Sedgwick AC, Gunnlaugsson T, Akkaya EU, Yoon J, James TD. Fluorescent chemosensors: the past, present and future. Chem Soc Rev. 2017;46:7105–23.

    Article  CAS  Google Scholar 

  61. Chen W, Guo C, He Q, Chi X, Lynch VM, Zhang Z, et al. Molecular cursor caliper: a fluorescent sensor for dicarboxylate dianions. J Am Chem Soc. 2019;141:14798–806.

    Article  CAS  Google Scholar 

  62. Mako TL, Racicot JM, Levine M. Supramolecular luminescent sensors. Chem Rev. 2019;119:322–477.

    Article  CAS  Google Scholar 

  63. Zhou Z, Chen D-G, Saha ML, Wang H, Li X, Chou P-T, et al. Designed conformation and fluorescence properties of self-assembled phenazine-cored platinum(II) metallacycles. J Am Chem Soc. 2019;141:5535–43.

    Article  CAS  Google Scholar 

  64. Guo C, Sedgwick AC, Hirao T, Sessler JL. Supramolecular fluorescent sensors: an historical overview and update. Coord Chem Rev. 2021;427:213560.

    Article  CAS  Google Scholar 

  65. Sedgwick AC, Brewster JT, Wu T, Feng X, Bull SD, Qian X, et al. Indicator displacement assays (IDAs): the past, present and future. Chem Soc Rev. 2021;50:9–38.

    Article  CAS  Google Scholar 

  66. Safont-Sempere MM, Fernández G, Würthner F. Self-sorting phenomena in complex supramolecular systems. Chem Rev. 2011;111:5784–814.

    Article  CAS  Google Scholar 

  67. He ZF, Jiang W, Schalley CA. Integrative self-sorting: a versatile strategy for the construction of complex supramolecular architecture. Chem Soc Rev. 2015;44:779–89.

    Article  CAS  Google Scholar 

  68. Hirao T, Kim DS, Chi X, Lynch VM, Ohara K, Park JS, et al. Control over multiple molecular states with directional changes driven by molecular recognition. Nat Commun. 2018;9:823.

    Article  Google Scholar 

  69. Shi X, Zhang X, Ni X.-L, Zhang H, Wei P, Liu J, et al. Supramolecular polymerization with dynamic self-sorting sequence control. Macromolecules. 2019;52:8814–25.

  70. Li H, Yang Y, Xu F, Duan Z, Li R, Wen H, et al. Sequence-controlled supramolecular copolymer constructed by self-sorting assembly of multiple noncovalent interactions. Org. Chem. Front. 2021;8:1117–24.

  71. Del Valle EMM. Cyclodextrins and their uses: a review. Process Biochem. 2004;39:1033–46.

  72. Crini G. Review: a history of cyclodextrins. Chem. Rev. 2014;114:10940–75.

  73. Das D, Scherman OA. Cucurbituril: at the interface of small molecule host–guest chemistry and dynamic aggregates. Isr J Chem. 2011;51:537–50.

    Article  CAS  Google Scholar 

  74. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA. Cucurbituril-based molecular recognition. Chem Rev. 2015;115:12320–406.

    Article  CAS  Google Scholar 

  75. Fa S, Kakuta T, Yamagishi T-a. Ogoshi conformation and planar chirality of pillar[n]arenes. Chem Lett. 2019;48:1278–87.

    Article  CAS  Google Scholar 

  76. Ogoshi T, Kakuta T, Yamagishi T-a. Applications of pillar [n] arene‐based supramolecular assemblies. Angew Chem Int Ed. 2019;58:2197–206.

    Article  CAS  Google Scholar 

  77. Kato K, Ohtani S, Fa S, Ogoshi T. Discrete and continuous one-dimensional channels based on pillar[n]arenes. Bull Chem Soc Jpn. 2021;94:2319–28.

    Article  CAS  Google Scholar 

  78. Kato K, Fa S, Ohtani S, Shi T-h, Brouwer AM, Ogoshi T. Noncovalently bound and mechanically interlocked systems using pillar[n]arenes. Chem Soc Rev. 2022;51:3648–87.

    Article  CAS  Google Scholar 

  79. Kim SK, Sessler JL. Calix[4]pyrrole-based ion pair receptors. Acc Chem Res. 2014;47:2525–36.

    Article  CAS  Google Scholar 

  80. Kim DS, Sessler JL. Calix[4]pyrroles: versatile molecular containers with ion transport, recognition, and molecular switching functions. Chem Soc Rev. 2015;44:532–46.

    Article  Google Scholar 

  81. Ji X, Chi X, Ahmed M, Long L, Sessler JL. Soft materials constructed using calix[4]pyrrole- and “texas-sized” box-based anion receptors. Acc Chem Res. 2019;52:1915–27.

    Article  CAS  Google Scholar 

  82. Diamond D, McKervey MA. Calixarene-based sensing agents. Chem Soc Rev. 1996;25:15–24.

    Article  CAS  Google Scholar 

  83. Guo D-S, Liu Y. Calixarene-based supramolecular polymerization in solution. Chem Soc Rev. 2012;41:5907–21.

    Article  CAS  Google Scholar 

  84. Guo D-S, Liu Y. Supramolecular chemistry of p-sulfonatocalix[n]arenes and its biological applications. Acc Chem Res. 2014;47:1925–34.

    Article  CAS  Google Scholar 

  85. Gokel GW. Lariat ethers: from simple sidearms to supramolecular systems. Chem Soc Rev. 1992;21:39–47.

    Article  CAS  Google Scholar 

  86. Ilioudis CA, Steed JW. Organic macrocyclic polyamine-based receptors for anions. J Supramol Chem. 2001;1:165–87.

  87. Canevet D, Pérez EM, Martín N. Wraparound hosts for fullerenes: tailored macrocycles and cages. Angew Chem Int Ed. 2011;50:9248–59.

    Article  CAS  Google Scholar 

  88. Roznyatovskiy VV, Lee C-H, Sessler JL. π-Extended isomeric and expanded porphyrins. Chem Soc Rev. 2013;42:1921–33.

    Article  CAS  Google Scholar 

  89. García-Simón C, Costas M, Ribas X. Metallosupramolecular receptors for fullerene binding and release. Chem Soc Rev. 2016;45:40–62.

    Article  Google Scholar 

  90. Jana A, Bähring S, Ishida M, Goeb S, Canevet D, Sallé M, et al. Functionalised tetrathiafulvalene- (TTF-) macrocycles: recent trends in applied supramolecular chemistry. Chem Soc Rev. 2018;47:5614–45.

    Article  CAS  Google Scholar 

  91. Segawa Y, Levine DR, Itami K. Topologically unique molecular nanocarbons. Acc Chem Res. 2019;52:2760–7.

    Article  CAS  Google Scholar 

  92. Leith GA, Shustova NB. Graphitic supramolecular architectures based on corannulene, fullerene, and beyond. Chem Commun. 2021;57:10125–38.

    Article  CAS  Google Scholar 

  93. Wang F, Bucher C, He Q, Jana A, Sessler JL. Oligopyrrolic cages: from classic molecular constructs to chemically responsive polytopic receptors. Acc Chem Res. 2022;55:1646–58.

    Article  CAS  Google Scholar 

  94. Haino T, Yanase M, Fukazawa Y. Crystalline supramolecular complexes of C-60 with calix[5]arenes. Tetrahedron Lett. 1997;38:3739–42.

  95. Haino T, Yanase M, Fukazawa Y. New supramolecular complex of C-60 based on calix[5]arene – its structure in the crystal and in solution. Angew Chem Int Ed Engl. 1997;36:259–60.

    Article  CAS  Google Scholar 

  96. Yanase M, Matsuoka M, Tatsumi Y, Suzuki M, Iwamoto H, Haino T, et al. Thermodynamic study on supramolecular complex formation of fullerene with calix[5]arenes in organic solvents. Tetrahedron Lett. 2000;41:493–7.

  97. Haino T, Araki H, Fujiwara Y, Tanimoto Y, Fukazawa Y. Fullerene sensors based on calix[5]arene. Chem Commun. 2002;8:2148–9.

    Article  Google Scholar 

  98. Haino T, Yamanaka Y, Araki H, Fukazawa Y. Metal-induced regulation of fullerene complexation with double-calix[5]arene. Chem Commun. 2002;8:402–3.

    Article  Google Scholar 

  99. Haino T, Seyama J, Fukunaga C, Murata Y, Komatsu K, Fukazawa Y. Calix[5]arene-based receptor for dumb-bell-shaped C120. Bull Chem Soc Jpn. 2005;78:768–70.

    Article  CAS  Google Scholar 

  100. Haino T, Yanase M, Fukazawa Y. Self-inclusion properties of C60-linked calix[5]arene. Tetrahedron Lett. 2005;46:1411–4.

  101. Haino T, Fukunaga C, Fukazawa Y. A new calix[5]arene-based container: selective extraction of higher fullerenes. Org Lett. 2006;8:3545–8.

  102. Haino T, Yanase M, Fukunaga C, Fukazawa Y. Fullerene encapsulation with calix[5]arenes. Tetrahedron. 2006;62:2025–35.

  103. Haino T, Fukunaga C, Fukazawa Y. Complexation of higher fullerenes by calix[5]arene-based host molecules. J Nanosci Nanotech. 2007;7:1386–8.

    Article  CAS  Google Scholar 

  104. Haino T, Matsumoto Y, Fukazawa Y. Supramolecular nano networks formed by molecular-recognition-directed self-assembly of ditopic calix[5]arene and dumbbell [60]fullerene. J Am Chem Soc. 2005;127:8936–7.

    Article  CAS  Google Scholar 

  105. Hirao T, Tosaka M, Yamago S, Haino T. Supramolecular fullerene polymers and networks directed by molecular recognition between calix[5]arene and C60. Chem Eur J. 2014;20:16138–46.

    Article  CAS  Google Scholar 

  106. Hirao T, Fujii N, Iwabe Y, Haino T. Self-sorting behavior in supramolecular fullerene polymerization directed by host–guest complexation between calix[5]arene and C60. Chem Commun. 2021;57:11831–4.

    Article  CAS  Google Scholar 

  107. Hirao T, Iwabe Y, Fujii N, Haino T. Helically organized fullerene array in a supramolecular polymer main chain. J Am Chem Soc. 2021;143:4339–45.

    Article  CAS  Google Scholar 

  108. Hirao T, Kudo H, Amimoto T, Haino T. Sequence-controlled supramolecular terpolymerization directed by specific molecular recognitions. Nat Commun. 2017;8:634.

    Article  Google Scholar 

  109. Haino T. Molecular-recognition-directed formation of supramolecular polymers. Polym J. 2013;45:363–83.

    Article  CAS  Google Scholar 

  110. Haino T. Supramolecular polymerization engineered with molecular recognition. Chem Rec. 2015;15:837–53.

    Article  CAS  Google Scholar 

  111. Haino T. Designer supramolecular polymers with specific molecular recognitions. Polym J. 2019;51:303–18.

    Article  CAS  Google Scholar 

  112. Hirao T, Haino T. Supramolecular ensembles formed via calix[5]arene-fullerene host-guest interactions. Chem Asian J. 2022;17:e202200344.

    CAS  Google Scholar 

  113. Cabral H, Miyata K, Osada K, Kataoka K. Block copolymer micelles in nanomedicine applications. Chem Rev. 2018;118:6844–92.

  114. Kennemur JG. Poly(vinylpyridine) segments in block copolymers: synthesis, self-assembly, and versatility. Macromolecules. 2019;52:1354–70.

  115. Yang SK, Ambade AV, Weck M. Main-chain supramolecular block copolymers. Chem Soc Rev. 2011;40:129–37.

    Article  CAS  Google Scholar 

  116. Milton M, Deng R, Mann A, Wang C, Tang D, Weck M. Secondary structure in nonpeptidic supramolecular block copolymers. Acc Chem Res. 2021;54:2397–408.

    Article  CAS  Google Scholar 

  117. Lohmeijer BGG, Schubert US. Supramolecular engineering with macromolecules: an alternative concept for block copolymers. Angew Chem Int Ed. 2002;41:3825–9.

    Article  CAS  Google Scholar 

  118. Yamauchi K, Lizotte JR, Hercules DM, Vergne MJ, Long TE. Combinations of microphase separation and terminal multiple hydrogen bonding in novel macromolecules. J Am Chem Soc. 2002;124:8599–604.

    Article  CAS  Google Scholar 

  119. Yang SK, Ambade AV, Weck Supramolecular M, Triblock ABC. Copolymers via one-pot, orthogonal self-assembly. J Am Chem Soc. 2010;132:1637–45.

    Article  CAS  Google Scholar 

  120. Bhaumik S, Ntetsikas K, Hadjichristidis N. Noncovalent supramolecular diblock copolymers: synthesis and microphase separation. Macromolecules. 2020;53:6682–9.

  121. Park T, Zimmerman SC, Supramolecular A. Multi-block copolymer with a high propensity for alternation. J Am Chem Soc. 2006;128:13986–7.

    Article  CAS  Google Scholar 

  122. Celiz AD, Scherman OA. Controlled ring-opening polymerization initiated via self-complementary hydrogen-bonding units. Macromolecules. 2008;41:4115–9.

  123. Elacqua E, Croom A, Manning KB, Pomarico SK, Lye D, Young L, et al. Supramolecular diblock copolymers featuring well-defined telechelic building blocks. Angew Chem Int Ed. 2016;55:15873–8.

    Article  CAS  Google Scholar 

  124. Deng R, Milton M, Pomarico SK, Weck M. Synthesis of a heterotelechelic helical poly(methacrylamide) and its incorporation into a supramolecular triblock copolymer. Polym Chem. 2019;10:5087–93.

    Article  CAS  Google Scholar 

  125. Hirao T, Fukuta K, Haino T. Polymerization of a biscalix[5]arene derivative. RSC Adv. 2021;11:17587–94.

  126. Hirao T, Fukuta K, Haino T. Supramolecular approach to polymer-shape transformation via calixarene–fullerene complexation. Macromolecules. 2020;53:3563–70.

  127. Erman B, Mark JE. Rubber-like elasticity. Annu Rev Phys Chem. 1989;40:351–74.

    Article  CAS  Google Scholar 

  128. Ito K. Novel cross-linking concept of polymer network: synthesis, structure, and properties of slide-ring gels with freely movable junctions. Polym J. 2007;39:489–99.

    Article  CAS  Google Scholar 

  129. Oku T, Furusho Y, Takata T. A concept for recyclable cross-linked polymers: topologically networked polyrotaxane capable of undergoing reversible assembly and disassembly. Angew Chem Int Ed. 2004;43:966–9.

    Article  CAS  Google Scholar 

  130. Loveless DM, Jeon SL, Craig SL. Rational control of viscoelastic properties in multicomponent associative polymer networks. Macromolecules. 2005;38:10171–7.

  131. Yount WC, Loveless DM, Craig SL. Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks. J Am Chem Soc. 2005;127:14488–96.

    Article  CAS  Google Scholar 

  132. Seiffert S, Sprakel J. Physical chemistry of supramolecular polymer networks. Chem Soc Rev. 2012;41:909–30.

    Article  CAS  Google Scholar 

  133. Voorhaar L, Hoogenboom R. Supramolecular polymer networks: hydrogels and bulk materials. Chem Soc Rev. 2016;45:4013–31.

    Article  CAS  Google Scholar 

  134. Wang R, Sing MK, Avery RK, Souza BS, Kim M, Olsen BD. Classical challenges in the physical chemistry of polymer networks and the design of new materials. Acc Chem Res. 2016;49:2786–95.

    Article  CAS  Google Scholar 

  135. Haino T, Hirai E, Fujiwara Y, Kashihara K. Supramolecular cross-linking of [60]fullerene-tagged polyphenylacetylene by the host-guest interaction of calix[5]arene and [60]fullerene. Angew Chem Int Ed. 2010;49:7899–903.

    Article  CAS  Google Scholar 

  136. Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. J Am Chem Soc. 1983;105:1494–8.

    Article  CAS  Google Scholar 

  137. Hu Y-J, Liu Y, Shen X-S, Fang X-Y, Qu S-S. Studies on the interaction between 1-hexylcarbamoyl-5-fluorouracil and bovine serum albumin. J Mol Struct. 2005;738:143–7.

    Article  CAS  Google Scholar 

  138. Rahman M, Harmon HJ. Absorbance change and static quenching of fluorescence of meso-tetra(4-sulfonatophenyl)porphyrin (TPPS) by trinitrotoluene (TNT). Spectrochim Acta A Mol Biomol Spectrosc. 2006;65:901–6.

  139. Singh DK, Iyer PK, Giri PK. Role of molecular interactions and structural defects in the efficient fluorescence quenching by carbon nanotubes. Carbon. 2012;50:4495–505.

  140. Yashima E, Maeda K, Iida H, Furusho Y, Nagai K. Helical polymers: synthesis, structures, and functions. Chem Rev. 2009;109:6102–211.

    Article  CAS  Google Scholar 

  141. Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem Rev. 2016;116:13752–990.

    Article  CAS  Google Scholar 

  142. San Jose BA, Akagi K. Liquid crystalline polyacetylene derivatives with advanced electrical and optical properties. Polym Chem. 2013;4:5144–61.

    Article  CAS  Google Scholar 

  143. Maeda K, Yashima E. Helical polyacetylenes induced via noncovalent chiral interactions and their applications as chiral materials. Top Curr Chem. 2017;375:72.

    Article  Google Scholar 

  144. Nakako H, Mayahara Y, Nomura R, Tabata M, Masuda T. Effect of chiral substituents on the helical conformation of poly(propiolic esters). Macromolecules. 2000;33:3978–82.

  145. Maeda K, Morino K, Okamoto Y, Sato T, Yashima E. Mechanism of helix induction on a stereoregular poly((4-carboxyphenyl)acetylene) with chiral amines and memory of the macromolecular helicity assisted by interaction with achiral amines. J Am Chem Soc. 2004;126:4329–42.

    Article  CAS  Google Scholar 

  146. Miyagawa T, Furuko A, Maeda K, Katagiri H, Furusho Y, Yashima E. Dual memory of enantiomeric helices in a polyacetylene induced by a single enantiomer. J Am Chem Soc. 2005;127:5018–9.

    Article  CAS  Google Scholar 

  147. Ishiwari F, Fukasawa K-i, Sato T, Nakazono K, Koyama Y, Takata T. A rational design for the directed helicity change of polyacetylene using dynamic rotaxane mobility by means of through-space chirality transfer. Chem Eur J. 2011;17:12067–75.

    Article  CAS  Google Scholar 

  148. Maeda K, Miyagawa T, Furuko A, Onouchi H, Yashima E. Dual memory of enantiomeric helices in poly(phenylacetylene)s induced by a single enantiomer through helix inversion and dual storage of the enantiomeric helicity memories. Macromolecules. 2015;48:4281–93.

  149. Zhu N, Nakazono K, Takata T. Reversible polyphenylacetylene helix conversion driven by a thermoresponsive rotaxane switch in the solid state. Chem Commun. 2016;52:3647–9.

    Article  CAS  Google Scholar 

  150. Ishiwari F, Nakazono K, Koyama Y, Takata T. Induction of single-handed helicity of polyacetylenes using mechanically chiral rotaxanes as chiral sources. Angew Chem Int Ed. 2017;56:14858–62.

    Article  CAS  Google Scholar 

  151. Hirao T, Iwabe Y, Hisano N, Haino T. Helicity of a polyacetylene directed by molecular recognition of biscalixarene and fullerene. Chem Commun. 2020;56:6672–5.

Download references

Acknowledgements

The author thanks Prof. Takeharu Haino (Graduate School of Advanced Science and Engineering, Hiroshima University) for his encouragement and constructive discussions. This work was supported in part by a Grant-in-Aid for Young Scientists, JSPS KAKENHI (22K14727). Finally, the author expresses heartiest gratitude to Hitomi Hirao for her kind assistance in the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiro Hirao.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hirao, T. Macromolecular architectures constructed by biscalix[5]arene–[60]fullerene host–guest interactions. Polym J 55, 95–104 (2023). https://doi.org/10.1038/s41428-022-00732-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00732-x

Search

Quick links