Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Conjugated polymers with thiophene-fused thiaborin units and their strong intermolecular interactions

Abstract

Boron-incorporated p−π* conjugated polymers have been studied as optoelectronic and sensor materials. p−π* conjugated polymers usually possess bulky aryl groups that kinetically stabilize the boron centers, and the bulky aryl substituents prohibit intermolecular interactions in the solid state, thereby limiting the application of the polymers to semiconductors. In this work, we synthesized a thiophene-fused thiaborin unit as a new building block. The thiaborin monomer was facilely converted into distannyl and diiodo derivatives via lithiation. The p−π* conjugated polymers with the thiaborin unit exhibited well-defined redshifts in the absorption spectra measured in the film state relative to those measured in solution, suggesting strong intermolecular interactions.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Facchetti A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater. 2011;23:733–58.

    Article  CAS  Google Scholar 

  2. Ostroverkhova O. Organic optoelectronic materials: mechanisms and applications. Chem Rev. 2016;116:13279–412.

    Article  CAS  PubMed  Google Scholar 

  3. Inal S, Rivnay J, Suiu A-O, Malliaras GG, McCulloch I. Conjugated polymers in bioelectronics. Acc Chem Res. 2018;51:1368–76.

    Article  CAS  PubMed  Google Scholar 

  4. Fratini S, Nikolka M, Salleo A, Schweicher G, Sirringhaus H. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat Mater. 2020;19:491–502.

  5. Ren Y, Jäkle F. Merging thiophene with boron: new building blocks for conjugated materials. Dalton Trans. 2016;45:13996–4007.

    Article  CAS  PubMed  Google Scholar 

  6. Ji L, Griesbeck S, Marder TB. Recent developments in and perspectives on three-coordinate boron materials: a bright future. Chem Sci. 2017;8:846–63.

    Article  CAS  PubMed  Google Scholar 

  7. Helten H. Doping the backbone of π-conjugated polymers with tricoordinate boron: synthetic strategies and emerging applications. Chem Asian J. 2019;14:919–35.

    Article  CAS  PubMed  Google Scholar 

  8. Yin X, Liu J, Jäkle F. Electron-deficient conjugated materials via p–π* conjugation with boron: extending monomers to oligomers, macrocycles, and polymers. Chem Eur J. 2021;27:2973–86.

    Article  CAS  PubMed  Google Scholar 

  9. Hudnall TW, Chiu C-W, Gabbaï FP. Fluoride ion recognition by chelating and cationic boranes. Acc Chem Res. 2009;42:388–97.

    Article  CAS  PubMed  Google Scholar 

  10. Wade CR, Broomsgrove AEJ, Aldridge S, Gabbaï FP. Fluoride ion complexation and sensing using organoboron compounds. Chem Rev. 2010;110:3958–84.

    Article  CAS  PubMed  Google Scholar 

  11. Mellerup SK, Wang S. Boron-based stimuli responsive materials. Chem Soc Rev. 2019;48:3537–49.

    Article  CAS  PubMed  Google Scholar 

  12. Matsumi N, Naka K, Chujo Y. Extension of π-conjugation length via the vacant p-orbital of the boron atom. Synthesis of novel electron deficient π-conjugated systems by hydroboration polymerization and their blue light emission. J Am Chem Soc. 1998;120:5112–3.

    Article  CAS  Google Scholar 

  13. Matsumi N, Naka K, Chujo Y. Poly(p-phenylene-borane)s. Novel organoboron π-conjugated polymers via grignard reagent. J Am Chem Soc. 1998;120:10776–7.

    Article  CAS  Google Scholar 

  14. Yin X, Chen J, Lalancette RA, Marder TB, Jäkle F. Highly electron-deficient and air-stable conjugated thienylboranes. Angew Chem Int Ed. 2014;53:9761–5.

    Article  CAS  Google Scholar 

  15. Yin X, Guo F, Lalancette RA, Jäkle F. Luminescent main-chain organoborane polymers: highly robust, electron-deficient poly(oligothiophene borane)s via stille coupling polymerization. Macromolecules. 2016;49:537–46.

    Article  CAS  Google Scholar 

  16. Adachi Y, Ooyama Y, Ren Y, Yin X, Jäkle F, Ohshita J. Hybrid conjugated polymers with alternating dithienosilole or dithienogermole and tricoordinate boron units. Polym Chem. 2018;9:291–9.

    Article  CAS  Google Scholar 

  17. Adachi Y, Nabeya T, Kawakami K, Yamaji K, Jäkle F, Ohshita J. Optical characteristics of hybrid macrocycles with dithienogermole and tricoordinate boron units. Chem Eur J. 2021;27:3306–14.

    Article  CAS  PubMed  Google Scholar 

  18. Adachi Y, Kondo K, Yin X, Jäkle F, Ohshita J. m-Phenylene linked macrocycle composed of electron-rich dithienogermole and electron-deficient tricoordinate boron units. Polymer 2022;239:124404.

    Article  CAS  Google Scholar 

  19. Meng B, Ren Y, Liu J, Jäkle F, Wang L. p–π conjugated polymers based on stable triarylborane with n-type behavior in optoelectronic devices. Angew Chem Int Ed. 2018;57:2183–7.

    Article  CAS  Google Scholar 

  20. Welsh TA, Laventure A, Alahmadi AF, Zhang G, Baumgartner T, Zou Y, et al. Borane incorporation in a non-fullerene acceptor to tune steric and electronic properties and improve organic solar cell performance. ACS Appl Energy Mater. 2019;2:1229–40.

    Article  CAS  Google Scholar 

  21. Yu Y, Dong C, Alahmadi AF, Meng B, Liu J, Jäkle F, et al. A p-π* conjugated triarylborane as an alcohol-processable n-type semiconductor for organic optoelectronic devices. J Mater Chem C. 2019;7:7427–32.

    Article  CAS  Google Scholar 

  22. Adachi Y, Nomura T, Tazuhara S, Naito H, Ohshita J. Thiophene-based twisted bistricyclic aromatic ene with tricoordinate boron: a new n-type semiconductor. Chem Commun. 2021;57:1316–9.

    Article  CAS  Google Scholar 

  23. Mitsudo K, Shigemori K, Mandai H, Wakamiya A, Suga S. Synthesis and properties of dithieno-fused 1,4-azaborine derivatives. Org Lett. 2018;20:7336–40.

    Article  CAS  PubMed  Google Scholar 

  24. Yan Y, Sun Z, Li C, Zhang J, Lv L, Liu X, et al. Thiophene-fused 1,4-thiaborins: synthesis, structures and properties. Asian J Org Chem. 2017;6:496–502.

    Article  CAS  Google Scholar 

  25. Chiu C-Y, Kim B, Gorodetsky AA, Sattler W, Wei S, Sattler A, et al. Shape-shifting in contorted dibenzotetrathienocoronenes. Chem Sci. 2011;2:1480–6.

    Article  CAS  Google Scholar 

  26. Wang X-Y, Jiang W, Chen T, Yan H-J, Wang Z-H, Wan L-J, et al. Molecular evidence for the intermolecular SS interaction in the surface molecular packing motifs of a fused thiophene derivative. Chem Commun. 2013;49:1829–31.

    Article  CAS  Google Scholar 

  27. Antonijević IS, Janjić GV, Milčić MK, Zarić SD. Preferred geometries and energies of sulfur–sulfur interactions in crystal structures. Cryst Growth Des. 2016;16:632–9.

    Article  Google Scholar 

  28. Higashino T, Ishida K, Sakurai T, Seki S, Konishi T, Kamada K, et al. Pluripotent features of doubly thiophene-fused benzodiphospholes as organic functional materials. Chem Eur J. 2019;25:6425–38.

    Article  CAS  PubMed  Google Scholar 

  29. Kruszewski J, Krygowski TM. Definition of aromaticity basing on the harmonic oscillator model. Tetrahedron Lett. 1972;13:3839–42.

    Article  Google Scholar 

  30. Krygowski TM, Szatylowicz H, Stasyuk OA, Dominikowska J, Palusiak M. Aromaticity from the viewpoint of molecular geometry: application to planar systems. Chem Rev. 2014;114:6383–422.

    Article  CAS  PubMed  Google Scholar 

  31. Ma J-L, Liu H, Li S-Y, Li Z-Y, Zhang H-Y, Wang Y, et al. Metal-free room-temperature phosphorescence from amorphous triarylborane-based biphenyl. Organometallics. 2020;39:4153–8.

    Article  CAS  Google Scholar 

  32. Wu Z, Nitsch J, Schuster J, Friedrich A, Edkins K, Loebnitz M, et al. Persistent room temperature phosphorescence from triarylboranes: a combined experimental and theoretical study. Angew Chem Int Ed. 2020;59:17137–44.

    Article  Google Scholar 

  33. Adachi Y, Yamada K, Ohshita J. Synthesis and optical properties of anthryl-substituted tetracyclic borepins. Chem Lett. 2022;51:654–7.

    Article  CAS  Google Scholar 

  34. Adachi Y, Arai F, Yamada K, Kurihara M, Ohshita J. Optical properties of boron-incorporated analogues of tetrathienoanthracene. Organometallics. 2022;41:1225–31.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI Grant Numbers JP19K15543 and JP22K14666.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yohei Adachi or Joji Ohshita.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Adachi, Y., Sakabe, M., Nomura, T. et al. Conjugated polymers with thiophene-fused thiaborin units and their strong intermolecular interactions. Polym J (2022). https://doi.org/10.1038/s41428-022-00726-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41428-022-00726-9

Search

Quick links