Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

B-N Lewis pair-fused dipyridylfluorene copolymers incorporating electron-deficient benzothiadiazole comonomers

Abstract

The isosteric replacement of C-C with B-N units is emerging as a powerful method to tune the optoelectronic properties of organic π-conjugated materials. In this work, copolymers based on ladder-type B-N Lewis pair-fused dipyridylfluorene monomers and a thienylated benzothiadiazole (BTDDT) are prepared by Stille-type polycondensation. The polymers containing exocyclic ethyl or pentafluorophenyl substituents on boron are characterized by multinuclear NMR spectroscopy and gel permeation chromatography, which provides estimates of the average degrees of polymerization (DPn) of 30 (R = Et) and 10 (R = C6F5). Electrochemical analyses on thin films reveal two distinct reversible reductions that are assigned to benzothiadiazole- and boron-fused dipyridylfluorene-centered processes. UV‒vis analyses show that the band gaps are significantly lowered relative to both BTDDT and the boron-containing monomers. As a result, the absorption and emission bands are shifted to much lower energies, leading to intense orange emission with maxima at 641 nm (R = Et) and 627 nm (R = C6F5), respectively, with quantum yields of over 50%. Computational studies on molecular model dyads offer insights into the effects of the isosteric replacement of C-C units in ladder-type fused bisfluorene with B-N Lewis pairs on the electronic structures of the polymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu ZQ, Marder TB. B-N versus C-C: how similar are they? Angew Chem Int Ed. 2008;47:242–4.

    Article  CAS  Google Scholar 

  2. Helten H. B=N units as part of extended π-conjugated oligomers and polymers. Chem Eur J. 2016;22:12972–82.

    Article  CAS  PubMed  Google Scholar 

  3. Giustra ZX, Liu SY. The state of the art in azaborine chemistry: new synthetic methods and applications. J Am Chem Soc. 2018;140:1184–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bosdet MJD, Piers WE, Sorensen TS, Parvez M. 10a-Aza-10b-borapyrenes: heterocyclic analogues of pyrene with internalized BN moieties. Angew Chem Int Ed. 2007;46:4940–3.

    Article  CAS  Google Scholar 

  5. Wang XY, Lin HR, Lei T, Yang DC, Zhuang FD, Wang JY, et al. Azaborine compounds for organic field-effect transistors: efficient synthesis, remarkable stability, and BN dipole interactions. Angew Chem Int Ed. 2013;52:3117–20.

    Article  CAS  Google Scholar 

  6. Wang XY, Wang JY, Pei J. BN Heterosuperbenzenes: synthesis and properties. Chem Eur J. 2015;21:3528–39.

    Article  CAS  PubMed  Google Scholar 

  7. Matsui K, Oda S, Yoshiura K, Nakajima K, Yasuda N, Hatakeyama T. One-shot multiple borylation toward BN-doped nanographenes. J Am Chem Soc. 2018;140:1195–8.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang PF, Zeng JC, Zhuang FD, Zhao KX, Sun ZH, Yao ZF, et al. Parent B2N2-perylenes with different BN orientations. Angew Chem Int Ed. 2021;60:23313–9.

    Article  CAS  Google Scholar 

  9. Ouadoudi O, Kaehler T, Bolte M, Lerner H-W, Wagner M. One tool to bring them all: Au-catalyzed synthesis of B,O- and B, N-doped PAHs from boronic and borinic acids. Chem Sci. 2021;12:5898–909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mellerup SK, Wang S. Boron-doped molecules for optoelectronics. Trends Chem. 2019;1:77–89.

    Article  CAS  Google Scholar 

  11. Wakamiya A, Taniguchi T, Yamaguchi S. Intramolecular B-N coordination as a scaffold for electron-transporting materials: synthesis and properties of boryl-substituted thienylthiazoles. Angew Chem Int Ed. 2006;45:3170–3.

    Article  CAS  Google Scholar 

  12. Li D, Zhang HY, Wang Y. Four-coordinate organoboron compounds for organic light-emitting diodes (OLEDs). Chem Soc Rev. 2013;42:8416–33.

    Article  CAS  PubMed  Google Scholar 

  13. Matsumoto T, Tanaka K, Tanaka K, Chujo Y. Synthesis and characterization of heterofluorenes containing four-coordinated group 13 elements: theoretical and experimental analyses and comparison of structures, optical properties and electronic states. Dalton Trans. 2015;44:8697–707.

    Article  CAS  PubMed  Google Scholar 

  14. Pais VF, Alcaide MM, Lopez-Rodriguez R, Collado D, Najera F, Perez-Inestrosa E, et al. Strongly emissive and photostable four-coordinate organoboron N,C chelates and their use in fluorescence microscopy. Chem Eur J. 2015;21:15369–76.

    Article  CAS  PubMed  Google Scholar 

  15. Bachollet SPJT, Volz D, Fiser B, Munch S, Ronicke F, Carrillo J, et al. A modular class of fluorescent difluoroboranes: synthesis, structure, optical properties, theoretical calculations and applications for biological imaging. Chem Eur J. 2016;22:12430–8.

    Article  CAS  PubMed  Google Scholar 

  16. Shen CS, Srebro-Hooper M, Jean M, Vanthuyne N, Toupet L, Williams JAG, et al. Synthesis and chiroptical properties of hexa-, octa-, and deca-azaborahelicenes: influence of helicene size and of the number of boron atoms. Chem Eur J. 2017;23:407–18.

    Article  CAS  PubMed  Google Scholar 

  17. Dash BP, Hamilton I, Tate DJ, Crossley DL, Kim JS, Ingleson MJ, et al. Benzoselenadiazole and benzotriazole directed electrophilic C-H borylation of conjugated donor-acceptor materials. J Mater Chem C. 2019;7:718–24.

    Article  CAS  Google Scholar 

  18. Morgan MM, Nazari M, Pickl T, Rautiainen JM, Tuononen HM, Piers WE, et al. Boron-nitrogen substituted dihydroindeno[1,2-b]fluorene derivatives as acceptors in organic solar cells. Chem Commun. 2019;55:11095–8.

    Article  CAS  Google Scholar 

  19. Maar RR, Zhang RZ, Stephens DG, Ding ZF, Gilroy JB. Near-infrared photoluminescence and electrochemiluminescence from a remarkably simple boron difluoride formazanate dye. Angew Chem Int Ed. 2019;58:1052–6.

    Article  CAS  Google Scholar 

  20. Saotome S, Suenaga K, Tanaka K, Chujo Y. Design for multi-step mechanochromic luminescence property by enhancement of environmental sensitivity in a solid-state emissive boron complex. Mater Chem Front. 2020;4:1781–8.

    Article  CAS  Google Scholar 

  21. Iqbal SA, Pahl J, Yuan K, Ingleson MJ. Intramolecular (directed) electrophilic C-H borylation. Chem Soc Rev. 2020;49:4564–91.

    Article  CAS  Google Scholar 

  22. Haque A, Al-Balushi RA, Raithby PR, Khan MS. Recent advances in π-conjugated NC-chelate organoboron materials. Molecules. 2020;25:2645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vanga M, Sa S, Kumari A, Murali AC, Nayak P, Das R, et al. Synthesis of π-extended B <- N coordinated phenanthroimidazole dimers and their linear and nonlinear optical properties. Dalton Trans. 2020;49:7737–46.

    Article  CAS  PubMed  Google Scholar 

  24. Sakamaki T, Nakamuro T, Yamashita K, Hirata K, Shang R, Nakamura E. B2N2-doped dibenzo[a,m]rubicene: modular synthesis, properties, and coordination-induced color tunability. Chem Mater. 2021;33:5337–44.

    Article  CAS  Google Scholar 

  25. Full J, Panchal SP, Gӧtz J, Krause A-M, Nowak-Król A. Modular synthesis of organoboron helically chiral compounds: cutouts from extended helices. Angew Chem Int Ed. 2021;60:4350–7.

    Article  CAS  Google Scholar 

  26. Zhu CZ, Fang L. Locking the coplanar conformation of π-conjugated molecules and macromolecules using dynamic noncovalent bonds. Macromol Rapid Commun. 2018;39:1700241.

    Article  Google Scholar 

  27. Koch R, Sun Y, Orthaber A, Pierik AJ, Pammer F. Turn-on fluorescence sensors based on dynamic intramolecular N -> B-coordination. Org Chem Front. 2020;7:1437–52.

    Article  CAS  Google Scholar 

  28. Dou CD, Ding ZC, Zhang ZJ, Xie ZY, Liu J, Wang LX. Developing conjugated polymers with high electron affinity by replacing a C-C unit with a B-N unit. Angew Chem Int Ed. 2015;54:3648–52.

    Article  CAS  Google Scholar 

  29. Zhao RY, Dou CD, Xie ZY, Liu J, Wang LX. Polymer acceptor based on BN units with enhanced electron mobility for efficient all-polymer solar cells. Angew Chem Int Ed. 2016;55:5313–7.

    Article  CAS  Google Scholar 

  30. Barbon SM, Gilroy JB. Boron difluoride formazanate copolymers with 9,9-di-n-hexylfluorene prepared by copper-catalyzed alkyne-azide cycloaddition chemistry. Polym Chem. 2016;7:3589–98.

    Article  CAS  Google Scholar 

  31. Grandl M, Schepper J, Maity S, Peukert A, von Hauff E, Pammer F. N -> B ladder polymers prepared by postfunctionalization: tuning of electron affinity and evaluation as acceptors in all-polymer solar cells. Macromolecules. 2019;52:1013–24.

    Article  CAS  Google Scholar 

  32. Huang JH, Li YQ. BN embedded polycyclic π-conjugated systems: synthesis, optoelectronic properties, and photovoltaic applications. Front Chem. 2018;6:341.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Ohtani S, Nakamura M, Gon M, Tanaka K, Chujo Y. Synthesis of fully-fused bisboron azomethine complexes and their conjugated polymers with solid-state near-infrared emission. Chem Commun. 2020;56:6575–8.

    Article  CAS  Google Scholar 

  34. Wakabayashi J, Gon M, Tanaka K, Chujo Y. Near-Infrared absorptive and emissive poly(p-phenylene vinylene) derivative containing azobenzene–boron complexes. Macromolecules. 2020;53:4524–32.

    Article  CAS  Google Scholar 

  35. Xiang Y, Meng H, Yao Q, Chang Y, Yu H, Guo L, et al. B ← N bridged polymer acceptors with 900 nm absorption edges enabling high-performance all-polymer solar cells. Macromolecules. 2020;53:9529–38.

    Article  CAS  Google Scholar 

  36. Ito S, Gon M, Tanaka K, Chujo Y. Recent developments in stimuli-responsive luminescent polymers composed of boron compounds. Polym Chem. 2021;12:6372–80.

    Article  CAS  Google Scholar 

  37. Yusuf M, Liu KL, Guo F, Lalancette RA, Jäkle F. Luminescent organoboron ladder compounds via directed electrophilic aromatic C-H borylation. Dalton Trans. 2016;45:4580–7.

    Article  CAS  PubMed  Google Scholar 

  38. Liu KL, Lalancette RA, Jäkle F. B-N Lewis pair functionalization of anthracene: structural dynamics, optoelectronic properties, and O2 sensitization. J Am Chem Soc. 2017;139:18170–3.

    Article  CAS  PubMed  Google Scholar 

  39. Alahmadi AF, Lalancette RA, Jäkle F. Highly luminescent ladderized fluorene copolymers based on B-N Lewis pair functionalization. Macromol Rapid Comm. 2018;39:1800456.

    Article  Google Scholar 

  40. Liu KL, Lalancette RA, Jäkle F. Tuning the structure and electronic properties of B-N fused dipyridylanthracene and implications on the self-sensitized reactivity with singlet oxygen. J Am Chem Soc. 2019;141:7453–62.

    Article  CAS  PubMed  Google Scholar 

  41. Vanga M, Lalancette RA, Jäkle F. Controlling the optoelectronic properties of pyrene by regioselective Lewis base-directed electrophilic aromatic borylation. Chem Eur J. 2019;25:10133–40.

    Article  CAS  PubMed  Google Scholar 

  42. Vanga M, Sahoo A, Lalancette RA, Jäkle F. Linear extension of anthracene via B <- N Lewis pair formation: effects on optoelectronic properties and singlet O2 sensitization. Angew Chem Int Ed. 2022;61:e202113075.

    Article  CAS  Google Scholar 

  43. Culver EW, Anderson TE, Navarrete JTL, Delgado MCR, Rasmussen SC. Poly(thieno[3,4-b]pyrazine-alt-2,1,3-benzothiadiazole)s: a new design paradigm in low band gap polymers. ACS Macro Lett. 2018;7:1215–9.

    Article  CAS  PubMed  Google Scholar 

  44. Anderson TE, Culver EW, Badia-Dominguez I, Wilcox WD, Buysse CE, Delgado MCR, et al. Probing the nature of donor-acceptor effects in conjugated materials: a joint experimental and computational study of model conjugated oligomers. Phys Chem Chem Phys. 2021;23:26534–46.

    Article  CAS  PubMed  Google Scholar 

  45. Kim Y, Cook S, Choulis SA, Nelson J, Durrant JR, Bradley DDC. Organic photovoltaic devices based on blends of regioregular poly(3-hexylthiophene) and poly(9,9-dioctylfluorene-co-benzothiadiazole). Chem Mater. 2004;16:4812–8.

    Article  CAS  Google Scholar 

  46. Nakashima M, Otsura T, Naito H, Ohshita J. Synthesis of new D-A polymers containing disilanobithiophene donor and application to bulk heterojunction polymer solar cells. Polym J. 2015;47:733–8.

    Article  CAS  Google Scholar 

  47. Fujiki M, Yoshimoto S. Time-evolved, far-red, circularly polarised luminescent polymer aggregates endowed with sacrificial helical Si-Si bond polymers. Mater Chem Front. 2017;1:1773–85.

    Article  CAS  Google Scholar 

  48. Fei ZP, Han Y, Gann E, Hodsden T, Chesman ASR, McNeill CR, et al. Alkylated selenophene-based ladder-type monomers via a facile route for high-performance thin-film transistor applications. J Am Chem Soc. 2017;139:8552–61.

    Article  CAS  PubMed  Google Scholar 

  49. Su YW, Lin YC, Wei KH. Evolving molecular architectures of donor-acceptor conjugated polymers for photovoltaic applications: from one-dimensional to branched to two-dimensional structures. J Mater Chem A. 2017;5:24051–75.

    Article  CAS  Google Scholar 

  50. Wang Y, Shi L, Ye Z, Guan K, Teng L, Wu J, et al. Reactive oxygen correlated chemiluminescent imaging of a semiconducting polymer nanoplatform for monitoring chemodynamic therapy. Nano Lett. 2020;20:176–83.

    Article  CAS  PubMed  Google Scholar 

  51. Liu A, Gedda L, Axelsson M, Pavliuk M, Edwards K, Hammarstroem L, et al. Panchromatic ternary polymer dots involving sub-picosecond energy and charge transfer for efficient and stable photocatalytic hydrogen evolution. J Am Chem Soc. 2021;143:2875–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li M, Huang X, Ren J. Multicolor chemiluminescent resonance energy-transfer system for in vivo high-contrast and targeted imaging. Anal Chem. 2021;93:3042–51.

    Article  CAS  PubMed  Google Scholar 

  53. Wang M, Qin H, Wang L, Wei J, Cai D, Yin Z, et al. Ladder-type tetra-p-phenylene-based copolymers for efficient polymer solar cells with open-circuit voltages approaching 1.1 V. J Mater Chem A. 2015;3:21672–81.

    Article  CAS  Google Scholar 

  54. Sundararaman A, Jäkle F. A comparative study of base-free arylcopper reagents for the transfer of aryl groups to boron halides. J Organomet Chem. 2003;681:134–42.

    Article  CAS  Google Scholar 

  55. Sundararaman A, Lalancette RA, Zakharov LN, Rheingold AL, Jäkle F. Structural diversity of pentafluorophenylcopper complexes. first evidence of π-coordination of unsupported arenes to organocopper aggregates. Organometallics. 2003;22:3526–32.

    Article  CAS  Google Scholar 

  56. Eggert Carlé J, Andreasen JW, Jørgensen M, Krebs FC. Low band gap polymers based on 1,4-dialkoxybenzene, thiophene, bithiophene donors and the benzothiadiazole acceptor. Sol Energy Mater Sol Cells. 2010;94:774–80.

    Article  Google Scholar 

  57. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al., Gaussian 16, Revision A.03, Gaussian, Inc., Wallingford CT, 2016.

  58. Nielsen CB, White AJP, McCulloch I. Effect of fluorination of 2,1,3-benzothiadiazole. J Org Chem. 2015;80:5045–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Köse ME. Theoretical estimation of donor strength of common conjugated units for organic electronics. J Phys Chem A. 2019;123:5566–73.

    Article  PubMed  Google Scholar 

  60. Iagatti A, Patrizi B, Basagni A, Marcelli A, Alessi A, Zanardi S, et al. Photophysical properties and excited state dynamics of 4,7-dithien-2-yl-2,1,3-benzothiadiazole. Phys Chem Chem Phys. 2017;19:13604–13.

    Article  CAS  PubMed  Google Scholar 

  61. Pati PB, Senanayak SP, Narayan KS, Zade SS. Solution processable benzooxadiazole and benzothiadiazole based D-A-D molecules with chalcogenophene: field effect transistor study and structure property relationship. ACS Appl Mater Int. 2013;5:12460–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

FJ thanks the US National Science Foundation (NSF Grant CHE-1954122) and Rutgers University for support. The 500 MHz NMR spectrometers (NSF MRI 1229030, ELF III 047-04) were purchased with support from the NSF and the State of New Jersey. AFA thanks the Saudi Arabia Government for a graduate fellowship. We would like to thank Dr. Pavel Kucheryavy at Rutgers University-Newark for assistance with the acquisition of 2D NMR data, Dr. Roman Brukh for assistance with the acquisition of mass spectral data, and Dr. Monika Baraniak for assistance with GPC measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frieder Jäkle.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alahmadi, A.F., Zuo, J. & Jäkle, F. B-N Lewis pair-fused dipyridylfluorene copolymers incorporating electron-deficient benzothiadiazole comonomers. Polym J 55, 433–442 (2023). https://doi.org/10.1038/s41428-022-00723-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00723-y

Search

Quick links