Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Correlating the structures and photovoltaic properties in phase-separated blends of conjugated donor polymers and acceptors

Abstract

The power conversion efficiency of polymer solar cells strongly depends on the microscale morphology of the interpenetrating network structures between the polymer donor and acceptor materials. Therefore, it is essential to understand the relationship between photovoltaic properties and phase-separated structures in the blend active layer. Here, we discuss the relationship between charge generation and collection and phase-separated structures, which was analyzed by a ternary phase diagram for polymer solar cells based on blends of a thiophene-based conjugated polymer donors and the following different acceptors: a fullerene derivative, a nonfullerene acceptor, and a conjugated polymer acceptor. By considering the ternary phase diagram based on the Flory–Huggins interaction parameters, we discuss the binodal point and acceptor volume fraction in the mixed phase in each material combination. Furthermore, we suggest strategies for improving the efficiency of polymer solar cells according to the molecular weight of acceptor materials. These findings will provide a guideline for developing highly efficient polymer solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sondergaard R, Hosel M, Angmo D, Larsen-Olsen TT, Krebs FC. Roll-to-roll fabrication of polymer solar cells. Mater Today. 2012;15:36–49.

    Article  CAS  Google Scholar 

  2. Kaltenbrunner M, White MS, Głowacki ED, Sekitani T, Someya T, Sariciftci NS, et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat Commun. 2012;3:770.

    Article  PubMed  Google Scholar 

  3. Kang H, Kim G, Kim J, Kwon S, Kim H, Lee K. Bulk-Heterojunction organic solar cells: five core technologies for their commercialization. Adv Mater. 2016;28:7821–61.

    Article  CAS  PubMed  Google Scholar 

  4. Kim T, Kim J-H, Kang TE, Lee C, Kang H, Shin M, et al. Flexible, highly efficient all-polymer solar cells. Nat Commun. 2015;6:8547.

    Article  CAS  PubMed  Google Scholar 

  5. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy. 2016;1:15027.

    Article  CAS  Google Scholar 

  6. He Y, Chen H-Y, Hou J, Li Y. Indene−C60 Bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc. 2010;132:5532–32.

    Article  CAS  Google Scholar 

  7. He Y, Li Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys Chem Chem Phys. 2011;13:1970–83.

    Article  CAS  PubMed  Google Scholar 

  8. Cui Y, Xu Y, Yao H, Bi P, Hong L, Zhang J, et al. Single‐junction organic photovoltaic cell with 19% efficiency. Adv Mater. 2021;33:2102420.

    Article  CAS  Google Scholar 

  9. Jia T, Zhang J, Zhang K, Tang H, Dong S, Tan C-H, et al. All-polymer solar cells with efficiency approaching 16% enabled using a Dithieno[3′,2′:3,4;2′′,3′′:5,6]benzo[1,2-c][1,2,5]thiadiazole (fDTBT)-based polymer donor. J Mater Chem A. 2021;9:8975–83.

    Article  CAS  Google Scholar 

  10. Yang F, Forrest SR. Photocurrent generation in nanostructured organic solar cells. ACS Nano. 2008;2:1022–32.

    Article  CAS  PubMed  Google Scholar 

  11. Araújo AAS, Bezerra MS, Storporitis S, Matos JR. Determination of the melting temperature, heat of fusion, and purity analysis of different samples of zidovudine (AZT) using DSC. Braz J Pharm Sci. 2010;1:46.

    Google Scholar 

  12. Midori K, Fukuhara T, Tamai Y, Kim HD, Ohkita H. Enhanced hole transport in Ternary blend polymer solar cells. Chem Phys Chem. 2019;20:2683–8.

    Article  CAS  PubMed  Google Scholar 

  13. Hecht K. Zum Mechanismus des Lichtelektrischen Primärstromes in Isolierenden Kristallen. Eur Phys J A. 1932;77:235–45.

    CAS  Google Scholar 

  14. Elizabeth VH, Vladimir D, Jürgen P. Study of field effect mobility in PCBM films and P3HT:PCBM blends. Sol Energy Mater Sol Cells. 2005;87:149–56.

    Article  Google Scholar 

  15. Yan H, Chen Z, Zheng Y, Newman C, Quinn JR, Dötz F, et al. A high-mobility electron-transporting polymer for printed transistors. Nature. 2009;457:679–86.

    Article  CAS  PubMed  Google Scholar 

  16. Nishi T, Wang TT. Melting point depression and kinetic effects of cooling on crystallization in Poly(vinylidene fluoride)-Poly(methyl methacrylate) mixtures. Macromolecules. 1975;8909–915.

  17. Flory, P. Principles of polymer Chemistry. Cornell University Press: Ithaca, New York, 1971.

  18. Kim JY. Phase diagrams of Ternary π-Conjugated polymer solutions for organic photovoltaics. Polymers. 2021;13:983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Flory PJ. Thermodynamics of high polymer solutions. Chem Phys. 1942;10:51–61.

    CAS  Google Scholar 

  20. Huggins ML. Some properties of solution of long-chain compounds. J Phys Chem. 1942;46:151–8.

    Article  CAS  Google Scholar 

  21. Flory PJ. Fifteenth Spiers memorial lecture. Thermodynamics of polymer solutions. Faraday Discuss. 1970;49:7–29.

    Article  Google Scholar 

  22. Kim JH, Gadisa A, Schaefer C, Yao H, Gautam BR, Balar N, et al. Strong polymer molecular weight-dependent material interactions: impact on the formation of the polymer/fullerene bulk heterojunction morphology. J Mater Chem A. 2017;5:13176–88.

    Article  CAS  Google Scholar 

  23. Ghasemi M, Hu H, Peng Z, Rech JJ, Angunawela I, Carpenter JH, et al. Delineation of thermodynamics and kinetic factors that control stability in non-fullerene organics solar cells. Joule. 2019;3:1328–48.

    Article  CAS  Google Scholar 

  24. Van Franeker JJ, Hermida-Merino D, Gommes C, Arapov K, Michles JJ, Janssen RAJ, et al. Sub-micrometer structure formation during spin coating revealed by time-resolved in situ laser and X-ray scattering. Adv Funct Mater. 2017;27:1702516.

    Article  Google Scholar 

  25. Biernat M, Dąbczyński P, Biernat P, Rysz J. Phase separation in PCDTBT:PCBM blends: from Flory-Huggins interaction parameters to Ternary phase diagrams. Chin J Polym Sci. 2020;38:1025–33.

    Article  CAS  Google Scholar 

  26. Van Franeker JJ, Westhoff D, Turbiez M, Wienk MM, Schmidt V, Janssen RA, et al. Controlling the dominant length scale of liquid–liquid phase separation in spin-coated organic semiconductor films. Adv Funct Mater. 2015;25:855–63.

    Article  Google Scholar 

  27. Wen G, Zou X, Hu R, Peng J, Chen Z, He X, et al. Ground- and excited-state characteristics in photovoltaic polymer N2200. RSC Adv. 2021;11:20191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bartelt JA, Beiley ZM, Hoke ET, Mateker WR, Douglas JD, Collins BA, et al. The importance of Fullerene Percolation in the mixed regions of polymer-Fullerene bulk heterojunction solar cells. Adv Energy Mater. 2013;3:364–74.

    Article  CAS  Google Scholar 

  29. Ye L, Collins BA, Jiao X, Zhao J, Yan H, Ade H. Miscibility–function relations in organic solar cells: significance of optimal miscibility in relation to Percolation. Adv Energy Mater. 2018;8:1703058.

    Article  Google Scholar 

  30. Ye L, Hu H, Ghasemi M, Wang T, Collins BA, Kim J-H, et al. Quantitative relations between interaction, miscibility and function in organic solar cells. Nat Mater. 2018;17:253–60.

    Article  CAS  PubMed  Google Scholar 

  31. Lindvig T, Michelsen, L M, Kontogeorgis MG. A Flory-Huggins Model based on the Hansen solubility parameters. Fluid Ph Equilibria. 2002;203:247–60.

    Article  CAS  Google Scholar 

  32. Jalan I, Lundin L, Van Stam J. Using solubility parameters to model more environmentally friendly solvent blends for organic solar cell active layers. Materials. 2019;12:3889.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Machui F, Langner S, Zhu X, Abbott S, Brabec C,J. Determination of the P3HT:PC61BM solubility parameters via a binary solvent gradient method: impact of solubility on the photovoltaic performance. Sol Energy Mater Sol Cells. 2012;100:138–46.

    Article  CAS  Google Scholar 

Download references

Funding

This study was partly supported by the JST-MIRAI Program of Japan Science and Technology Agency (Grant No. JPMJMI20E2) and KAKENHI from Japan Society for the Promotion of Science (JSPS) (Grant Nos. 21H04692, 22K14726, and 22K19062).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyung Do Kim or Hideo Ohkita.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, J., Doi, K., Kim, H.D. et al. Correlating the structures and photovoltaic properties in phase-separated blends of conjugated donor polymers and acceptors. Polym J 55, 477–487 (2023). https://doi.org/10.1038/s41428-022-00718-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00718-9

Search

Quick links