Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A fused π-extended molecule containing an electron-accepting naphthobisthiadiazole and its incorporation into a copolymer: synthesis, properties, and semiconducting performance

Abstract

Fused π-conjugated molecules have been extensively developed as critical and indispensable components in organic semiconductors due to their desirable physicochemical properties and charge-transport characteristics. Incorporation of acceptor units into fused π-conjugated frameworks has advantages in terms of tuning frontier molecular orbital energies. However, development of fused π-conjugated molecules with donor-acceptor configurations is still lacking due to limited availability and synthetic access to acceptor units. Here, we report the design and synthesis of a new fused donor-acceptor-donor π-conjugated molecule (BDT-NTz) composed of electron-donating benzodithiophene (BDT) units and an electron-accepting naphthobisthiadiazole (NTz) unit. The fused chemical structure of BDT-NTz generated a sharp absorption band and a high quantum efficiency. This indicated that BDT-NTz showed typical p-type responses with a hole mobility of 1.1 × 10−3 cm2 V−1 s−1 in an organic field-effect transistor. We also developed a copolymer based on BDT-NTz and an electron-accepting fluorinated NTz and investigated its photophysical/electrochemical properties and semiconducting characteristics. This study demonstrates that the use of fused π-extended molecules containing NTz can broaden the availability of both small-molecule-based and polymer-based organic semiconducting materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padinger F, Rittberger RS, Sariciftci NS. Effects of postproduction treatment on plastic solar cells. Adv Funct Mater. 2003;13:85–88.

    Article  CAS  Google Scholar 

  2. Takimiya K, Ebata H, Sakamoto K, Izawa T, Otsubo T, Kunugi Y. 2,7-Diphenyl[1]benzothieno[3,2-b]benzothiophene, a new organic semiconductor for air-stable organic field-effect transistors with mobilities up to 2.0 cm2 V−1 s−1. J Am Chem Soc. 2006;128:12604–5.

    Article  CAS  PubMed  Google Scholar 

  3. Pisula W, Feng X, Müllen K. Charge-carrier transporting graphene-type molecules. Chem Mater. 2011;23:554–67.

    Article  CAS  Google Scholar 

  4. Zhang H, Zhang S, Gao K, Liu F, Yao H, Yang B, et al. Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells. J Mater Chem A. 2017;5:10416–23.

    Article  CAS  Google Scholar 

  5. Zhang L, Cao Y, Colella NS, Liang Y, Brédas JL, Houk KN, et al. Unconventional, chemically stable, and soluble two-dimensional angular polycyclic aromatic hydrocarbons: from molecular design to device applications. Acc Chem Res. 2015;48:500–9.

    Article  CAS  PubMed  Google Scholar 

  6. Umeyama T, Igarashi K, Sasada D, Tamai Y, Ishida K, Koganezawa T, et al. Efficient light-harvesting, energy migration, and charge transfer by nanographene-based nonfullerene small-molecule acceptors exhibiting unusually long excited-state lifetime in the film state. Chem Sci. 2020;11:3250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Takimiya K, Bulgarevich K, Abbas M, Horiuchi S, Ogaki T, Kawabata K, et al. “Manipulation” of crystal structure by methylthiolation enabling ultrahigh mobility in a pyrene-based molecular semiconductor. Adv Mater. 2021;33:2102914.

    Article  CAS  Google Scholar 

  8. Yu CP, Kumagai S, Kushida T, Mitani M, Mitsui C, Ishii H, et al. Mixed-orbital charge transport in n-shaped benzene- and pyrazine-fused organic semiconductors. J Am Chem Soc. 2022;144:11159–11167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kitamura M, Arakawa Y. Pentacene-based organic field-effect transistors. J Phys Condens Matter. 2008;20:184011.

    Article  Google Scholar 

  10. Zhan X, Facchetti A, Barlow S, Marks TJ, Ratner MA, Wasielewski MR, et al. Rylene and related diimides for organic electronics. Adv Mater. 2011;23:268–84.

    Article  CAS  PubMed  Google Scholar 

  11. Markiewicz JT, Wudl F. Perylene, oligorylenes, and aza-analogs. ACS Appl Mater Interfaces. 2015;7:28063–28085.

    Article  CAS  PubMed  Google Scholar 

  12. Cui X, Xiao C, Winands T, Koch T, Li Y, Zhang L, et al. Hexacene diimides. J Am Chem Soc. 2018;140:12175–80.

    Article  CAS  PubMed  Google Scholar 

  13. Lin Y, He Q, Zhao F, Huo L, Mai J, Lu X, et al. A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J Am Chem Soc. 2016;138:2973–6.

    Article  CAS  PubMed  Google Scholar 

  14. Cui Y, Yao H, Zhang J, Zhang T, Wang Y, Hong L, et al. Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nat Commun. 2019;10:2515.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Yuan J, Zhang Y, Zhou L, Zhang C, Lau TK, Zhang G, et al. Fused benzothiadiazole: a building block for n-type organic acceptor to achieve high-performance organic solar cells. Adv Mater. 2019;31:1807577.

    Article  Google Scholar 

  16. Lai H, Chen H, Zhu Y, Chen L, Huang HH, He F. An asymmetrical A-DAD-A-type acceptor simultaneously enhances voltage and current for efficient organic solar cells. J Mater Chem A. 2020;8:9670–6.

    Article  CAS  Google Scholar 

  17. Facchetti A, Deng Y, Wang A, Koide Y, Sirringhaus H, Marks TJ, et al. Tuning the semiconducting properties of sexithiophene by α,ω-substitution- α,ω-diperfluorohexylsexithiophene: the first n-type sexithiophene for thin-film transistors. Angew Chem Int Ed. 2000;39:4547–4551.

    Article  CAS  Google Scholar 

  18. Sakamoto Y, Komatsu S, Suzuki T. Tetradecafluorosexithiophene: the first perfluorinated oligothiophene. J Am Chem Soc. 2001;123:4643–4.

    Article  CAS  PubMed  Google Scholar 

  19. Sakamoto Y, Suzuki T, Kobayashi M, Gao Y, Fukai Y, Inoue Y, et al. Perfluoropentacene: high-performance p-n junctions and complementary circuits with pentacene. J Am Chem Soc. 2004;126:8138–40.

    Article  CAS  PubMed  Google Scholar 

  20. Ie Y, Nitani M, Ishikawa M, Nakayama K, Tada H, Kaneda T, et al. Electronegative oligothiophenes for n-type semiconductors: difluoromethylene-bridged bithiophene and its oligomers. Org Lett. 2007;9:2115–8.

    Article  CAS  PubMed  Google Scholar 

  21. Park SK, Kim JH, Yoon SJ, Kwon OK, An BK, Park SY. High-performance n-type organic transistor with a solution-processed and exfoliation-transferred two-dimensional crystalline layered film. Chem Mater. 2012;24:3263–8.

    Article  CAS  Google Scholar 

  22. Ie Y, Jinnai S, Nitani M, Aso Y. Arenedithiocarboxyimide-containing extended π-conjugated systems with high electron affinity. J Mater Chem C. 2013;1:5373–80.

    Article  CAS  Google Scholar 

  23. Melucci M, Durso M, Bettini C, Gazzano M, Maini L, Toffanin S, et al. Structure-property relationships in multifunctional thieno(bis)imide-based semiconductors with different sized and shaped n-alkyl ends. J Mater Chem C. 2014;2:3448–56.

    Article  CAS  Google Scholar 

  24. Cheng YJ, Chen CH, Ho YJ, Chang SW, Witek HA, Hsu CS. Thieno[3,2-b]pyrrolo donor fused with benzothiadiazolo, benzoselenadiazolo and quinoxalino acceptors: synthesis, characterization, and molecular properties. Org Lett. 2011;13:5484–7.

    Article  CAS  PubMed  Google Scholar 

  25. Yang Y, Wang Y, Xie Y, Xiong T, Yuan Z, Zhang Y, et al. Fused perylenebisimide-carbazole: new ladder chromophores with enhanced third-order nonlinear optical activities. Chem Commun. 2011;47:10749–51.

    Article  CAS  Google Scholar 

  26. Kojima M, Tamoto A, Aratani N, Yamada H. Rearrangement of an aniline linked perylene bisimide under acidic conditions and visible to near-infrared emission from the intramolecular charge-transfer state of its fused derivatives. Chem Commun. 2017;53:5698–701.

    Article  CAS  Google Scholar 

  27. Cai Z, Zhang N, Awais MA, Filatov AS, Yu L. Synthesis of alternating donor–acceptor ladder‐type molecules and investigation of their multiple charge‐transfer pathways. Angew Chem Int Ed. 2018;57:6442–8.

    Article  CAS  Google Scholar 

  28. Zhou Z, Liu W, Zhou G, Zhang M, Qian D, Zhang J, et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv Mater. 2020;32:1906324.

    Article  CAS  Google Scholar 

  29. Su F, Chen S, Mo X, Wu K, Wu J, Lin W, et al. Trisulfur radical anion-triggered stitching thienannulation: rapid access to largely π-extended thienoacenes. Chem Sci. 2020;11:1503–9.

    Article  CAS  Google Scholar 

  30. Wen J, Qiu F, Liu H, Liu X, Hu H, Duan Y, et al. syn/anti-oligothienoacene diimides with up to 10 fused rings. Angew Chem Int Ed. 2022;61:e202112482.

    Article  CAS  Google Scholar 

  31. Wang M, Hu X, Liu P, Li W, Gong X, Huang F, et al. Donor-acceptor conjugated polymer based on naphtho[1,2-c:5,6-c’]bis[1,2,5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc. 2011;133:9638–41.

    Article  CAS  PubMed  Google Scholar 

  32. Osaka I, Takimiya K. Naphthobischalcogenadiazole conjugated polymers: emerging materials for organic electronics. Adv Mater. 2017;29:1605218.

    Article  Google Scholar 

  33. Chatterjee S, Ie Y, Karakawa M, Aso Y. Naphtho[1,2‐c:5,6‐c’]bis[1,2,5]thiadiazole‐containing π‐conjugated compound: nonfullerene electron acceptor for organic photovoltaics. Adv Funct Mater. 2016;26:1161–1168.

    Article  CAS  Google Scholar 

  34. Chatterjee S, Ie Y, Seo T, Moriyama T, Wetzelaer GJAH, Blom PWM, et al. Fluorinated naphtho[1,2-c:5,6-c’]bis[1,2,5]thiadiazole-containing π-conjugated compound: synthesis, properties, and acceptor applications in organic solar cells. NPG Asia Mater. 2018;10:1016–28.

    Article  CAS  Google Scholar 

  35. Iguchi K, Mikie T, Saito M, Komeyama K, Seo T, Ie Y, et al. N-type semiconducting polymers based on dicyano naphthobisthiadiazole: high electron mobility with unfavorable backbone twist. Chem Mater. 2021;33:2218–28.

    Article  CAS  Google Scholar 

  36. Jinnai S, Oi A, Seo T, Moriyama T, Minami R, Higashida S, et al. Electron-accepting π-conjugated compound containing cyano-substituted naphthobisthiadiazole as nonfullerene acceptor in organic solar cells. Synthesis. 2021;53:3390–6.

    Article  CAS  Google Scholar 

  37. Aldrich TJ, Dudnik AS, Eastham ND, Manley EF, Chen LX, Chang RPH, et al. Suppressing defect formation pathways in the direct C-H arylation polymerization of photovoltaic copolymers. Macromolecules. 2018;51:9140–55.

    Article  CAS  Google Scholar 

  38. Nielsen CB, White AJP, McCulloch I. Effect of fluorination of 2,1,3-benzothiadiazole. J Org Chem. 2015;80:5045–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Conboy G, Spencer HJ, Angioni E, Kanibolotsky AL, Findlay NJ, Coles SJ, et al. To bend or not to bend-are heteroatom interactions within conjugated molecules effective in dictating conformation and planarity? Mater Horiz. 2016;3:333–9.

    Article  CAS  Google Scholar 

  40. Thorley KJ, McCulloch I. Why are S-F and S-O non-covalent interactions stabilising? J Mater Chem C. 2018;6:12413–21.

    Article  CAS  Google Scholar 

  41. da Silva Filho DA, Kim E-G, Brédas J-L. Transport Properties in the Rubrene Crystal: Electronic Coupling and Vibrational Reorganization Energy. Adv Mater. 2005;17:1072–5.

    Article  Google Scholar 

  42. Turro NJ, Ramamurthy V, Scaiano JC. Principles of molecular photochemistry: an introduction. Sausalito, CA: University Science Books; 2009.

  43. Yoshida H. Near-ultraviolet inverse photoemission spectroscopy using ultra-low energy electrons. Chem Phys Lett. 2012;539–540:180–5.

    Article  Google Scholar 

  44. Yoshida H. Measuring the electron affinity of organic solids: an indispensable new tool for organic electronics. Anal Bioanal Chem. 2014;406:2231–7.

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida H. Electron transport in bathocuproine interlayer in organic semiconductor devices. J Phys Chem C. 2015;119:24459–64.

    Article  CAS  Google Scholar 

  46. Jinnai S, Ie Y, Kashimoto H, Yoshida H, Karakawa M, Aso Y. Three-dimensional π-conjugated compounds as non-fullerene acceptors in organic photovoltaics: the influence of acceptor unit orientation at phase interfaces on photocurrent generation efficiency. J Mater Chem A. 2017;5:3932–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (20H02814, 20H05841, 20KK0123, 19K15505, 20H04639, and 21K14602), CREST (J205101030), NEDO (21500248-0), and “Dynamic Alliance for Open Innovation Bridging Human, Environmental and Materials” from the Ministry of Education, Culture, Sports, Science and Technology, Japan. YI is grateful to the Takahashi Industrial and Economic Research Foundation and NAGASE Science Technology Foundation. Thanks are extended to the CAC, ISIR, for assistance in obtaining elemental analyses. We appreciate Prof. Dr. Kenji Matsuda (Kyoto University) and Dr. Daiki Shimizu (Kyoto University) for the measurement of fluorescence lifetime and absolute quantum yield. We also wish to express our appreciation to Prof. Dr. Akinori Saeki (Osaka University) for the PYS measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Ie.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asakawa, R., Seo, T., Yokoyama, S. et al. A fused π-extended molecule containing an electron-accepting naphthobisthiadiazole and its incorporation into a copolymer: synthesis, properties, and semiconducting performance. Polym J 55, 451–461 (2023). https://doi.org/10.1038/s41428-022-00716-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00716-x

Search

Quick links