Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Reversible complexation mediated polymerization of methacrylates using amine catalysts in aqueous heterogeneous systems

Abstract

The development of reversible deactivation radical polymerization in aqueous dispersed systems is important for directly preparing various functional polymers in a particulate state from their corresponding monomer species under environmentally friendly conditions. This study demonstrates reversible complexation mediated polymerization (RCMP) in the presence of an aqueous phase using various amine catalysts and monomers to investigate the effect of the hydrophobicity of amine catalysts and monomers on the polymerization control of RCMP in aqueous heterogeneous systems. The rational design of polymerization conditions, including the selection of the initiator, catalyst, molecular iodine (I2) concentration, temperature, and monomer hydrophobicity, facilitated the control of miniemulsion RCMP. The essential criteria for polymerization control were (i) sufficient hydrophobicity of initiators and catalysts to enable partitioning into the monomer phases, (ii) a suitable I2 concentration and temperature for improving polymerization control using long-alkyl chain amine catalysts, and (iii) sufficient hydrophobicity of the monomers to suppress water solubilization into the monomer phase. Finally, we demonstrated RCMP in miniemulsion systems (miniemulsion RCMP) using a suitable monomer and amine catalyst. This study on miniemulsion RCMPs facilitates the development of synthetic routes for functional polymers and particulate materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matyjaszewski K, Tsarevsky NV. Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1. 2009;4:276–88. https://doi.org/10.1038/nchem.257

    Article  CAS  Google Scholar 

  2. Hawker CJ. Molecular weight control by a” living” free-radical polymerization process. J Am Chem Soc. 1994;116:1185–6. https://doi.org/10.1021/ja00103a055

    Article  Google Scholar 

  3. Moad G, Rizzardo E, Thang SH. Living radical polymerization by the RAFT process—A second update. Aust J Chem. 2009;62:1402–72. https://doi.org/10.1071/CH09311.11

    Article  CAS  Google Scholar 

  4. Goto A, Fukuda T. Kinetics of living radical polymerization. Prog Polym Sci. 2004;29:329–85. https://doi.org/10.1016/j.progpolymsci.2004.01.002

    Article  CAS  Google Scholar 

  5. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization. Chem Rev. 2001;101:3689–746. https://doi.org/10.1021/cr9901182

    Article  CAS  Google Scholar 

  6. Ouchi M, Sawamoto M. 50th anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective. Macromolecules. 2017;50:2603–14. https://doi.org/10.1021/acs.macromol.6b02711

    Article  CAS  Google Scholar 

  7. Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C. Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci. 2020;111:101311 https://doi.org/10.1016/j.progpolymsci.2020.101311

    Article  CAS  Google Scholar 

  8. Hawker CJ, Bosman AW, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem Rev. 2001;101:3661–88. https://doi.org/10.1021/cr990119u

    Article  CAS  Google Scholar 

  9. Gopalan P, Li X, Li M, Ober CK, Gonzales CP, Hawker CJ. Rod-coil block copolymers: An iterative synthetic approach via living free-radical procedures. J Polym Sci A Polym Chem 2003;41:3640–56. https://doi.org/10.1002/pola.10930

    Article  CAS  Google Scholar 

  10. Hibino M, Tanaka K, Ouchi M, Terashima T. Amphiphilic random-block copolymer micelles in water: precise and dynamic self-assembly controlled by random copolymer association. Macromolecules. 2022;55:178–89. https://doi.org/10.1021/acs.macromol.1c02186

    Article  CAS  Google Scholar 

  11. Jones GR, Anastasaki A, Whitfield R, Engelis N, Liarou E, Haddleton DM. Copper-mediated reversible deactivation radical polymerization in aqueous media. Angew Chem Int Ed. 2018;57:10468–82. https://doi.org/10.1002/anie.201802091

    Article  CAS  Google Scholar 

  12. Matyjaszewski K. Advanced materials by atom transfer radical polymerization. Adv Mater. 2018;30:1706441 https://doi.org/10.1002/adma.201706441

    Article  CAS  Google Scholar 

  13. Moad G, Rizzardo E, Thang SH. Radical addition–fragmentation chemistry in polymer synthesis. Polymer. 2008;49:1079–131. https://doi.org/10.1016/j.polymer.2007.11.020

    Article  CAS  Google Scholar 

  14. Moad G. A critical survey of dithiocarbamate reversible addition-fragmentation chain transfer (RAFT) agents in radical polymerization. J Polym Sci A Polym Chem. 2019;57:216–27. https://doi.org/10.1002/pola.29199

    Article  CAS  Google Scholar 

  15. Fan W, Yamago S. Synthesis of poly(N-vinylamide)s and poly(vinylamine)s and their block copolymers by organotellurium-mediated radical polymerization. Angew Chem Int Ed. 2019;58:7113–6. https://doi.org/10.1002/anie.201902940

    Article  CAS  Google Scholar 

  16. Yamago S. Photoactivation of organotellurium compounds in precision polymer synthesis: controlled radical polymerization and radical coupling reactions. Bull Chem Soc Jpn. 2020;93:287–98. https://doi.org/10.1246/bcsj.20190339

    Article  CAS  Google Scholar 

  17. Fan W, Tosaka M, Yamago S, Cunningham MF. Living ab initio emulsion polymerization of methyl methacrylate in water using a water-soluble organotellurium chain transfer agent under thermal and photochemical conditions. Angew Chem Int Ed. 2018;57:962–6. https://doi.org/10.1002/anie.201710754

    Article  CAS  Google Scholar 

  18. Boyer C, Valade D, Sauguet L, Ameduri B, Boutevin B. Iodine transfer polymerization (ITP) of vinylidene fluoride (VDF). Influence of the defect of VDF chaining on the control of ITP. Macromolecules. 2005;38:10353–62. https://doi.org/10.1021/ma051349f

    Article  CAS  Google Scholar 

  19. Lacroix-Desmazes P, Severac R, Boutevin B. Reverse iodine transfer polymerization of methyl acrylate and n -butyl acrylate. Macromolecules. 2005;38:6299–309. https://doi.org/10.1021/ma050056j

    Article  CAS  Google Scholar 

  20. David G, Boyer C, Tonnar J, Ameduri B, Lacroix-Desmazes P, Boutevin B. Use of iodocompounds in radical polymerization. Chem Rev. 2006;106:3936–62. https://doi.org/10.1021/cr0509612

    Article  CAS  Google Scholar 

  21. Goto A, Tsujii Y, Fukuda T. Reversible chain transfer catalyzed polymerization (RTCP): A new class of living radical polymerization. Polymer. 2008;49:5177–85. https://doi.org/10.1016/j.polymer.2008.08.044

    Article  CAS  Google Scholar 

  22. Goto A, Zushi H, Hirai N, Wakada T, Tsujii Y, Fukuda T. Living radical polymerizations with germanium, tin, and phosphorus catalysts–reversible chain transfer catalyzed polymerizations (RTCPs). J Am Chem Soc. 2007;129:13347–54. https://doi.org/10.1021/ja0755820

    Article  CAS  Google Scholar 

  23. Goto A, Suzuki T, Ohfuji H, Tanishima M, Fukuda T, Tsujii Y, et al. Reversible complexation mediated living radical polymerization (RCMP) using organic catalysts. Macromolecules. 2011;44:8709–15. https://doi.org/10.1021/ma2014589

    Article  CAS  Google Scholar 

  24. Ohtsuki A, Goto A, Kaji H. Visible-light-induced reversible complexation mediated living radical polymerization of methacrylates with organic catalysts. Macromolecules. 2013;46:96–102. https://doi.org/10.1021/ma302244j

    Article  CAS  Google Scholar 

  25. Wang CG, Chong AML, Pan HM, Sarkar J, Tay XT, Goto A. Recent development in halogen-bonding-catalyzed living radical polymerization. Polym Chem. 2020;11:5559–71. https://doi.org/10.1039/D0PY00939C

    Article  CAS  Google Scholar 

  26. Cunningham MF. Controlled/living radical polymerization in aqueous dispersed systems. Prog Polym Sci. 2008;33:365–98. https://doi.org/10.1016/j.progpolymsci.2007.11.002

    Article  CAS  Google Scholar 

  27. Min K, Matyjaszewski K. Atom transfer radical polymerization in aqueous dispersed media. Cent Eur J Chem 2009;7:657–74. https://doi.org/10.2478/s11532-009-0092-1

    Article  CAS  Google Scholar 

  28. Zetterlund PB, Thickett SC, Perrier S, Bourgeat-Lami E, Lansalot M. Controlled/living radical polymerization in dispersed systems: an update. Chem Rev. 2015;115:9745–800. https://doi.org/10.1021/cr500625k

    Article  CAS  Google Scholar 

  29. Zetterlund PB, Kagawa Y, Okubo M. Controlled/living radical polymerization in dispersed systems. Chem Rev. 2008;108:3747–94. https://doi.org/10.1021/cr800242x

    Article  CAS  Google Scholar 

  30. Canning SL, Smith GN, Armes SP. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules. 2016;49:1985–2001. https://doi.org/10.1021/acs.macromol.5b02602

    Article  CAS  Google Scholar 

  31. Bultz E, Ouchi M, Fujimura K, Sawamoto M, Cunningham MF. Ferrocene cocatalysis for ruthenium-catalyzed radical miniemulsion polymerization. Polymer. 2016;106:313–9. https://doi.org/10.1016/j.polymer.2016.08.084

    Article  CAS  Google Scholar 

  32. Luo Y, Tsavalas J, Schork FJ. Theoretical aspects of particle swelling in living free radical miniemulsion polymerization. Macromolecules. 2001;34:5501–7. https://doi.org/10.1021/ma0020741

    Article  CAS  Google Scholar 

  33. de Brouwer H, Tsavalas JG, Schork FJ. Living radical polymerization in miniemulsion using reversible addition−fragmentation chain transfer. Macromolecules. 2000;33:9239–46. https://doi.org/10.1021/ma001205v

    Article  CAS  Google Scholar 

  34. Lansalot M, Davis TP, Heuts JPA. RAFT miniemulsion polymerization: influence of the structure of the RAFT agent. Macromolecules. 2002;35:7582–91. https://doi.org/10.1021/ma012214m

    Article  CAS  Google Scholar 

  35. Min K, Gao HF, Matyjaszewski K. Preparation of homopolymers and block copolymersin miniemulsion by ATRP using activators generated by electron transfer (AGET). J Am Chem Soc.2005;127:3825–30. https://doi.org/10.1021/ja0429364

    Article  CAS  Google Scholar 

  36. Khan M, Guimarães TR, Choong K, Moad G, Perrier S, Zetterlund PB. RAFT emulsion polymerization for (multi)block copolymer synthesis: overcoming the constraints of monomer order. Macromolecules. 2021;54:736–46. https://doi.org/10.1021/acs.macromol.0c02415

    Article  CAS  Google Scholar 

  37. Kitayama Y, Chaiyasat A, Minami H, Okubo M. Emulsifier-free, organotellurium-mediated living radical emulsion polymerization of styrene: polymerization loci. Macromolecules. 2010;43:7465–71. https://doi.org/10.1021/ma1013034

    Article  CAS  Google Scholar 

  38. Tan M, Shi Y, Fu Z, Yang W. In situ synthesis of diblock copolymer nano-assemblies via dispersion RAFT polymerization induced self-assembly and Ag/copolymer composite nanoparticles thereof. Polym Chem. 2018;9:1082–94. https://doi.org/10.1039/C7PY01905J

    Article  CAS  Google Scholar 

  39. Jakubowski W, Lutz JF, Slomkowski S, Matyjaszewski K. Block and random copolymers as surfactants for dispersion polymerization. I. Synthesis via atom transfer radical polymerization and ring-opening polymerization. J Polym Sci A Polym Chem. 2005;43:1498–510. https://doi.org/10.1002/pola.20629

    Article  CAS  Google Scholar 

  40. Delaittre G, Save M, Charleux B. Nitroxide-mediated aqueous dispersion polymerization: from water-soluble macroalkoxyamine to thermosensitive nanogels. Macromol Rapid Commun. 2007;28:1528–33. https://doi.org/10.1002/marc.200700230

    Article  CAS  Google Scholar 

  41. Zetterlund PB, Wakamatsu J, Okubo M. Nitroxide-mediated radical polymerization of styrene in aqueous microemulsion: initiator efficiency, compartmentalization, and nitroxide phase transfer. Macromolecules. 2009;42:6944–52. https://doi.org/10.1021/ma9012829

    Article  CAS  Google Scholar 

  42. Tomoeda S, Kitayama Y, Wakamatsu J, Minami H, Zetterlund PB, Okubo M. Nitroxide-mediated radical polymerization in microemulsion (microemulsion nmp) of n -butyl acrylate. Macromolecules. 2011;44:5599–604. https://doi.org/10.1021/ma200859s

    Article  CAS  Google Scholar 

  43. Thomson ME, Ness JS, Schmidt SC, Cunningham MF. High solids nitroxide-mediated microemulsion polymerization of MMA with a small amount of styrene and synthesis of (MMA- co -St)- block -(BMA- co -St) polymers. Macromolecules. 2011;44:1460–70. https://doi.org/10.1021/ma1026302

    Article  CAS  Google Scholar 

  44. Sogabe A, Flores JD, McCormick CL. Reversible addition−fragmentation chain transfer (RAFT) polymerization in an inverse microemulsion: partitioning of chain transfer agent (CTA) and its effects on polymer molecular weight. Macromolecules. 2010;43:6599–607. https://doi.org/10.1021/ma1008463

    Article  CAS  Google Scholar 

  45. Li WSJ, Cunningham MF. Nitroxide-mediated microemulsion polymerization of n-butyl acrylate: decoupling of target molecular weight and particle size. Polym Chem. 2014;5:3804–16. https://doi.org/10.1039/C4PY00113C

    Article  CAS  Google Scholar 

  46. Lansalot M, Farcet C, Charleux B, Vairon JP, Pirri R. Controlled free-radical miniemulsion polymerization of styrene using degenerative transfer. Macromolecules. 1999;32:7354–60. https://doi.org/10.1021/ma990447w

    Article  CAS  Google Scholar 

  47. Farcet C, Lansalot M, Pirri R, Vairon JP, Charleux B. Polystyrene-block-poly(butyl acrylate) and polystyrene-block-poly[(butyl acrylate)-co-styrene] block copolymers prepared via controlled free-radical miniemulsion polymerization using degenerative iodine transfer. Macromol Rapid Commun. 2000;21:921–6. https://doi.org/10.1002/1521-3927(20000801)21:13<921::AID-MARC921>3.0.CO;2-0

    Article  CAS  Google Scholar 

  48. Tonnar J, Lacroix-Desmazes P, Boutevin B. Controlled radical polymerization of styrene by reverse iodine transfer polymerization (ritp) in miniemulsion: use of hydrogen peroxide as oxidant. Macromolecules. 2007;40:186–90. https://doi.org/10.1021/ma061649c

    Article  CAS  Google Scholar 

  49. Tonnar J, Lacroix-Desmazes P, Boutevin B. Living radical ab initio emulsion polymerization of n -butyl acrylate by reverse iodine transfer polymerization (RITP): use of persulfate as both initiator and oxidant. Macromolecules. 2007;40:6076–81. https://doi.org/10.1021/ma0705218

    Article  CAS  Google Scholar 

  50. Song JS, Winnik MA. Monodisperse, Micron-Sized Reactive Low Molar Mass Polymer Microspheres by Two-Stage Living Radical Dispersion Polymerization of Styrene. Macromolecules. 2006;39:8318–25. https://doi.org/10.1021/ma061321j

    Article  CAS  Google Scholar 

  51. Sue-eng S, Boonchuwong T, Chaiyasat P, Okubo M, Chaiyasat A. Preparation of stable poly (methacrylic acid)-b-polystyrene emulsion by emulsifier-free emulsion iodine transfer polymerization (emulsion ITP) with self-assembly nucleation. Polymer. 2017;110:124–30. https://doi.org/10.1016/j.polymer.2016.12.067

    Article  CAS  Google Scholar 

  52. Yorizane M, Nagasuga T, Kitayama Y, Tanaka A, Minami H, Goto A, et al. Reversible chain transfer catalyzed polymerization (RTCP) of methyl methacrylate with nitrogen catalyst in an aqueous microsuspension system. Macromolecules. 2010;43:8703–5. https://doi.org/10.1021/ma101918p

    Article  CAS  Google Scholar 

  53. Kitayama Y, Yorizane M, Minami H, Okubo M. Iodine transfer polymerization (ITP with CHI 3) and reversible chain transfer catalyzed polymerization (RTCP with nitrogen catalyst) of methyl methacrylate in aqueous microsuspension systems: comparison with bulk system. Macromolecules. 2012;45:2286–91. https://doi.org/10.1021/ma3000829

    Article  CAS  Google Scholar 

  54. Mao W, Sarkar J, Peng B, Goto A. Aqueous emulsion polymerizations of methacrylates and styrene via reversible complexation mediated polymerization (RCMP). Polym Chem. 2021;12:5770–80. https://doi.org/10.1039/D1PY01087E

    Article  CAS  Google Scholar 

  55. Kagawa Y, Zetterlund PB, Minami H, Okubo M. Atom transfer radical polymerization in miniemulsion: partitioning effects of copper(I) and copper(II) on polymerization rate, livingness, and molecular weight distribution. Macromolecules. 2007;40:3062–9. https://doi.org/10.1021/ma062786c

    Article  CAS  Google Scholar 

  56. Lei L, Tanishima M, Goto A, Kaji H, Yamaguchi Y, Komatsu H, et al. Systematic study on alkyl iodide initiators in living radical polymerization with organic catalysts. Macromolecules. 2014;47:6610–8. https://doi.org/10.1021/ma501569j

    Article  CAS  Google Scholar 

  57. Yalkowsky SH, He Y, Jain P Handbook of aqueous solubility data, 2nd edn. CRC Press, Boca Raton, FL. 2010.

  58. Stenström S, Dalene M, Skarping G. The solubility of tri-n-octylamine in water and phosphoric acid solutions. Anal Chim Acta. 1985;177:279–84. https://doi.org/10.1016/S0003-2670(00)82962-1

    Article  Google Scholar 

  59. Ni Y, Tian C, Zhang L, Cheng Z, Zhu X. Photocontrolled iodine-mediated green reversible-deactivation radical polymerization of methacrylates: effect of water in the polymerization system. ACS Macro Lett. 2019;8:1419–25. https://doi.org/10.1021/acsmacrolett.9b00507

    Article  CAS  Google Scholar 

  60. Yokota K, Kani M, Ishii Y. Determination of propagation and termination rate constants for some methacrylates in their radical polymerizations. J Polym Sci, Part A-1: Polym Chem. 1968;6:1325–39. https://doi.org/10.1002/pol.1968.150060524

    Article  CAS  Google Scholar 

  61. Burnett GM, Evans P, Melville HW. Polymerization of esters of methacrylic acid. Part I.—the polymerization of n-butyl methacrylate. Trans Faraday Soc. 1953;49:1096–104. https://doi.org/10.1039/TF9534901096

    Article  CAS  Google Scholar 

  62. Ullmann’s encyclopedia of industrial chemistry. 7th edn. John Wiley & Sons; 2008.

  63. Chai X-S, Hou QX, Schork FJ. Determination of the solubility of a monomer in water by multiple headspace extraction gas chromatography. J Appl Polym Sci. 2006;99:1296–301. https://doi.org/10.1002/app.20984

    Article  CAS  Google Scholar 

  64. Ullmann’s encyclopedia of industrial chemistry. 5th edn. VCH Publishers, 1985.

  65. Goto A, Sanada S, Lei L, Hori K. Theoretical and experimental studies on elementary reactions in living radical polymerization via organic amine catalysis. Macromolecules. 2016;49:2511–7. https://doi.org/10.1021/acs.macromol.6b00230

    Article  CAS  Google Scholar 

  66. Liu X, Zhang L, Cheng Z, Zhu X. Straightforward catalyst/solvent-free iodine-mediated living radical polymerization of functional monomers driven by visible light irradiation. Chem Commun. 2016;52:10850–53. https://doi.org/10.1039/C6CC05454D

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors deeply appreciate Godo Shigen Co., Ltd. (Tokyo, Japan) for kindly supplying the iodide initiator. This study was partially supported by JSPS KAKENHI (Grant number 21H02004) and the Leading Initiative for Excellent Young Researchers, MEXT, Japan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yukiya Kitayama or Atsushi Harada.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kitayama, Y., Tokura, D. & Harada, A. Reversible complexation mediated polymerization of methacrylates using amine catalysts in aqueous heterogeneous systems. Polym J 55, 1–12 (2023). https://doi.org/10.1038/s41428-022-00715-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00715-y

Search

Quick links