Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Crystalline structure, molecular motion and photocarrier formation in thin films of monodisperse poly(3-hexylthiophene) with various molecular weights

Subjects

Abstract

A better understanding of the carrier formation process for semiconducting polymers, especially in thin films, is essential for designing and constructing highly functionalized polymeric optoelectronic devices. Here, the effects of aggregation states and thermal molecular motion on photocarrier formation in melt-crystallized thin films of monodispersed poly(3-hexylthiophene) (P3HT) are discussed. Grazing incidence X-ray diffraction measurements revealed that the crystalline ordering in the films was greatly influenced by the molecular weight (MW) of P3HT. In contrast, dynamic mechanical analysis (DMA) revealed that the MW had no significant effects on the α1 relaxation process, which corresponded to the twisting motion of thiophene rings in the crystalline phase unless the MW was quite small. Femtosecond transient absorption (TAS) spectroscopy showed that better crystalline ordering led to the direct formation of polarons (P) from hot excitons at room temperature. Once the temperature went beyond Tα1, at approximately 310 K, the P formation process from polaron pairs (PP) was activated. Thus, it can be claimed that the P formation for P3HT could be regulated by the thermal molecular motion in addition to the crystalline structure. The knowledge obtained here should be useful for a better molecular design of semiconducting polymers that can be applied to optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells. Nat Mater. 2006;5:197–203.

    Article  CAS  Google Scholar 

  2. Gunes S, Neugebauer H, Sariciftci NS. Conjugated polymer-based organic solar cells. Chem Rev. 2007;107:1324–38.

    Article  PubMed  Google Scholar 

  3. Thompson BC, Fréchet JMJ. Polymer–fullerene composite solar cells. Angew Chem Int Ed. 2008;47:58–77.

    Article  CAS  Google Scholar 

  4. Root SE, Savagatrup S, Printz AD, Rodriquez D, Lipomi DJ. Mechanical properties of organic semiconductors for stretchable, highly flexible, and mechanically robust electronics. Chem Rev. 2017;117:6467–99.

    Article  CAS  PubMed  Google Scholar 

  5. Gu X, Shaw L, Gu K, Toney MF, Bao Z. The meniscus-guided deposition of semiconducting polymers. Nat Commun. 2018;9:534.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dimitrakopoulos CD, Malenfant PRL. Organic thin film transistors for large area electronics. Adv Mater. 2002;14:99–117.

    Article  CAS  Google Scholar 

  7. Braga D, Horowitz G. High-performance organic field-effect transistors. Adv Mater. 2009;21:1473–86.

    Article  CAS  Google Scholar 

  8. Kang K, Watanabe S, Broch K, Sepe A, Brown A, Nasrallah I, et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat Mater. 2016;15:896–902.

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Zhu C, Pfattner R, Yan H, Jin L, Chen S, et al. A highly stretchable, transparent, and conductive polymer. Sci Adv. 2017;3:e1602076.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ashizawa M, Zheng Y, Tran H, Bao Z. Intrinsically stretchable conjugated polymer semiconductors in field effect transistors. Prog Polym Sci. 2020;100:101181.

    Article  CAS  Google Scholar 

  11. Dimov IB, Moser M, Malliaras GG, McCulloch I. Semiconducting polymers for neural applications. Chem Rev. 2022;122:4356–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mcquade DT, Pullen AE, Swager TM. Conjugated polymer-based chemical sensors. Chem Rev. 2000;100:2537–74.

    Article  CAS  PubMed  Google Scholar 

  13. Higashihara T. Strategic design and synthesis of π-conjugated polymers suitable as intrinsically stretchable semiconducting materials. Polym J. 2021;53:1061–71.

    Article  CAS  Google Scholar 

  14. Chen SA, Ni JM. Structure/properties of conjugated conductive polymers. 1. Neutral poly(3-alkythiophene)s. Macromolecules. 1992;25:6081–89.

    Article  CAS  Google Scholar 

  15. McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M. Self-orienting head-to-tail poly(3-alkylthiophenes): New insights on structure-property relationships in conducting polymers. J Am Chem Soc. 1993;115:4910–11.

    Article  CAS  Google Scholar 

  16. Coakley KM, McGehee MD. Conjugated polymer photovoltaic cells. Chem Mater. 2004;16:4533–42.

    Article  CAS  Google Scholar 

  17. Liu R, Yang W, Xu W, Deng J, Ding C, Guo Y, et al. Impact of chemical design on the molecular orientation of conjugated donor–acceptor polymers for field-effect transistors. ACS Appl Polym Mater. 2022;4:2233–50.

    Article  CAS  Google Scholar 

  18. Chen SA, Liao CS. Conductivity relaxation and chain motions in conjugated conducting polymers: Neutral poly(3-alkylthiophenes). Macromolecules. 1993;26:2810–16.

    Article  CAS  Google Scholar 

  19. Diaz Calleja R, Matveeva ES, Parkhutik VP. Electric relaxation in chemically synthesized polyaniline: Study using electric modulus formalism. J Non-Cryst Solids. 1995;180:260–65.

    Article  CAS  Google Scholar 

  20. Crist B, Schultz JM. Polymer spherulites: A critical review. Prog Polym Sci. 2016;56:1–63.

    Article  CAS  Google Scholar 

  21. Michell RM, Müller AJ. Confined crystallization of polymeric materials. Prog Polym Sci. 2016;54-55:183–213.

    Article  CAS  Google Scholar 

  22. Zen A, Pflaum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, et al. Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv Funct Mater. 2004;14:757–64.

    Article  CAS  Google Scholar 

  23. Kline RJ, McGehee MD, Kadnikova EN, Liu J, Fréchet JMJ, Toney MF. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules. 2005;38:3312–19.

    Article  CAS  Google Scholar 

  24. Ko J, Kim Y, Kang JS, Berger R, Yoon H, Char K. Enhanced vertical charge transport of homo- and blended semiconducting polymers by nanoconfinement. Adv Mater. 2020;32:1908087.

    Article  CAS  Google Scholar 

  25. Ruffino R, Fichera L, Valenti A, Jankowski M, Konovalov O, Messina GML, et al. Tuning the randomization of lamellar orientation in poly (3-hexylthiophene) thin films with substrate nano-curvature. Polymer. 2021;230:124071.

    Article  CAS  Google Scholar 

  26. Chou H-C, Fang C-K, Chung P-Y, Yu J-R, Liao W-S, Chen S-H, et al. Structural and optical identification of planar side-chain stacking P3HT nanowires. Macromolecules. 2021;54:10750–57.

    Article  CAS  Google Scholar 

  27. Yamagata Y, Benten H, Kawanishi T, Nakamura M. Nanoscale observation of the influence of solvent additives on all-polymer blend solar cells by photoconductive atomic force microscopy. ACS Appl Polym Mater. 2022;4:169–78.

    Article  CAS  Google Scholar 

  28. Han MJ, Kim J, Kim B, Park SM, Ahn H, Shin TJ, et al. Orientation control of semiconducting polymers using microchannel molds. ACS Nano. 2020;14:12951–61.

    Article  CAS  PubMed  Google Scholar 

  29. Li N, Song L, Hohn N, Saxena N, Cao W, Jiang X, et al. Nanoscale crystallization of a low band gap polymer in printed titania mesopores. Nanoscale. 2020;12:4085–93.

    Article  CAS  PubMed  Google Scholar 

  30. Choudhary K, Chen AX, Pitch GM, Runser R, Urbina A, Dunn TJ, et al. Comparison of the mechanical properties of a conjugated polymer deposited using spin coating, interfacial spreading, solution shearing, and spray coating. ACS Appl Mater Interfaces. 2021;13:51436–46.

    Article  CAS  PubMed  Google Scholar 

  31. Xiao J, Jia XE, Duan C, Huang F, Yip H-L, Cao Y. Surpassing 13% efficiency for polythiophene organic solar cells processed from nonhalogenated solvent. Adv Mater. 2021;33:2008158.

    Article  CAS  Google Scholar 

  32. Abe T, Kawaguchi D, Watanabe M, Hoshino T, Ishihara T, Tanaka K. An effect of crystallographic distortion on carrier mobility in poly(3-hexylthiophene) thin films. Appl Phys Lett. 2021;118:181601.

    Article  CAS  Google Scholar 

  33. Kline RJ, McGehee MD, Kadnikova EN, Liu JS, Fréchet JMJ. Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv Mater. 2003;15:1519–22.

    Article  CAS  Google Scholar 

  34. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y. “Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater. 2007;17:1636–44.

    Article  Google Scholar 

  35. Lu G, Li L, Li S, Qu Y, Tang H, Yang X. Constructing thin polythiophene film composed of aligned lamellae via controlled solvent vapor treatment. Langmuir. 2009;25:3763–68.

    Article  CAS  PubMed  Google Scholar 

  36. Street RA, Northrup JE, Salleo A. Transport in polycrystalline polymer thin-film transistors. Phys Rev B. 2005;71:165202.

    Article  Google Scholar 

  37. Hu X, Xu L. Structure and properties of 3-alkoxy substituted polythiophene synthesized at low temperature. Polymer. 2000;41:9147–54.

    Article  CAS  Google Scholar 

  38. Yazawa K, Inoue Y, Yamamoto T, Asakawa N. Twist glass transition in regioregulated poly(3-alkylthiophene). Phys Rev B. 2006;74:094204.

    Article  Google Scholar 

  39. Pankaj S, Beiner M. Long-term behavior and side chain crystallization of poly(3-alkyl thiophenes). Soft Matter. 2010;6:3506–16.

    Article  CAS  Google Scholar 

  40. Xie R, Lee Y, Aplan MP, Caggiano NJ, Müller C, Colby RH, et al. Glass transition temperature of conjugated polymers by oscillatory shear rheometry. Macromolecules. 2017;50:5146–54.

    Article  CAS  Google Scholar 

  41. Cao Z, Galuska L, Qian Z, Zhang S, Huang L, Prine N, et al. The effect of side-chain branch position on the thermal properties of poly(3-alkylthiophenes). Polym Chem 2020;11:517–26.

    Article  CAS  Google Scholar 

  42. Zhan P, Zhang W, Jacobs IE, Nisson DM, Xie R, Weissen AR, et al. Side chain length affects backbone dynamics in poly(3-alkylthiophene)s. J Polym Sci, Part B: Polym Phys. 2018;56:1193–202.

    Article  CAS  Google Scholar 

  43. Ogata Y, Kawaguchi D, Tanaka K. An effect of molecular motion on carrier formation in a poly(3-hexylthiophene) film. Sci Rep. 2015;5:8436.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Obrzut J, Page KA. Electrical conductivity and relaxation in poly(3-hexylthiophene). Phys Rev B. 2009;80:195211.

    Article  Google Scholar 

  45. Wolf CM, Kanekal KH, Yimer YY, Tyagi M, Omar-Diallo S, Pakhnyuk V, et al. Assessment of molecular dynamics simulations for amorphous poly(3-hexylthiophene) using neutron and X-ray scattering experiments. Soft Matter. 2019;15:5067–83.

    Article  CAS  PubMed  Google Scholar 

  46. Ogata Y, Kawaguchi D, Tanaka K. The impact of polymer dynamics on photoinduced carrier formation in films of semiconducting polymers. J Phys Chem Lett. 2015;6:4794–98.

    Article  CAS  PubMed  Google Scholar 

  47. Balar N, Rech JJ, Siddika S, Song R, Schrickx HM, Sheikh N, et al. Resolving the molecular origin of mechanical relaxations in donor–acceptor polymer semiconductors. Adv Funct Mater. 2022;32:2105597.

    Article  CAS  Google Scholar 

  48. Guo J, Ohkita H, Benten H, Ito S. Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities. J Am Chem Soc. 2009;131:16869–80.

    Article  CAS  PubMed  Google Scholar 

  49. Guo J, Ohkita H, Benten H, Ito S. Charge generation and recombination dynamics in poly(3-hexylthiophene)/fullerene blend films with different regioregularities and morphologies. J Am Chem Soc. 2010;132:6154–64.

    Article  CAS  PubMed  Google Scholar 

  50. Yu W, Donohoo-Vallett PJ, Zhou J, Bragg AE. Ultrafast photo-induced nuclear relaxation of a conformationally disordered conjugated polymer probed with transient absorption and femtosecond stimulated raman spectroscopies. J Chem Phys. 2014;141:044201.

    Article  PubMed  Google Scholar 

  51. Lee D, Lee J, Song K-H, Rhee H, Jang D-J. Formation and decay of charge carriers in aggregate nanofibers consisting of poly(3-hexylthiophene)-coated gold nanoparticles. Phys Chem Chem Phys. 2016;18:2087–96.

    Article  CAS  PubMed  Google Scholar 

  52. Rana A, Gupta N, Lochan A, Sharma GD, Chand S, Kumar M, et al. Charge carrier dynamics and surface plasmon interaction in gold nanorod-blended organic solar cell. J Appl Phys. 2016;120:063102.

    Article  Google Scholar 

  53. Lee D, Sin DH, Kim SW, Lee H, Byun HR, Mun J, et al. Singlet exciton delocalization in gold nanoparticle-tethered poly(3-hexylthiophene) nanofibers with enhanced intrachain ordering. Macromolecules. 2017;50:8487–96.

    Article  CAS  Google Scholar 

  54. Mensik M, Pfleger J, Toman P. Dynamics of photogenerated polarons and polaron pairs in P3HT thin films. Chem Phys Lett. 2017;677:87–91.

    Article  CAS  Google Scholar 

  55. Rais D, Mensik M, Paruzel B, Toman P, Pfleger J. Concept of the time-dependent diffusion coefficient of polarons in organic semiconductors and its determination from time-resolved spectroscopy. J Phys Chem C. 2018;122:22876–83.

    Article  CAS  Google Scholar 

  56. Rana D, Donfack P, Jovanov V, Wagner V, Materny A. Ultrafast polaron-pair dynamics in a poly(3-hexylthiophene-2,5-diyl) device influenced by a static electric field: Insights into electric-field-related charge loss. Phys Chem Chem Phys. 2019;21:21236–48.

    Article  CAS  PubMed  Google Scholar 

  57. Masunaga H, Ogawa H, Takano T, Sasaki S, Goto S, Tanaka T, et al. Multipurpose soft-material SAXS/WAXS/GISAXS beamline at SPring-8. Polym J. 2011;43:471–77.

    Article  CAS  Google Scholar 

  58. Ogawa H, Masunaga H, Sasaki S, Goto S, Tanaka T, Seike T, et al. Experimental station for multiscale surface structural analyses of soft-material films at SPring-8 via a GISWAXS/GIXD/XR-integrated system. Polym J. 2013;45:109–16.

    Article  CAS  Google Scholar 

  59. Kayunkid N, Uttiya S, Brinkmann M. Structural model of regioregular poly(3-hexylthiophene) obtained by electron diffraction analysis. Macromolecules. 2010;43:4961–67.

    Article  CAS  Google Scholar 

  60. Brinkmann M. Structure and morphology control in thin films of regioregular poly(3-hexylthiophene). J Polym Sci Polym Phys. 2011;49:1218–33.

    Article  CAS  Google Scholar 

  61. Brinkmann M, Rannou P. Molecular weight dependence of chain packing and semicrystalline structure in oriented films of regioregular poly(3-hexylthiophene) revealed by high-resolution transmission electron microscopy. Macromolecules. 2009;42:1125–30.

    Article  CAS  Google Scholar 

  62. Wu Z, Petzold A, Henze T, Thurn-Albrecht T, Lohwasser RH, Sommer M, et al. Temperature and molecular weight dependent hierarchical equilibrium structures in semiconducting poly(3-hexylthiophene). Macromolecules. 2010;43:4646–53.

    Article  CAS  Google Scholar 

  63. Maillard A, Rochefort A. Structural and electronic properties of poly(3-hexylthiophene) π-stacked crystals. Phys Rev B. 2009;79:115207.

    Article  Google Scholar 

  64. Lindenmeyer PH, Hosemann R. Application of the theory of paracrystals to the crystal structure analysis of polyacrylonitrile. J Appl Phys. 1963;34:42–45.

    Article  CAS  Google Scholar 

  65. Hosemann R, Hindeleh AM. Structure of crystalline and paracrystalline condensed matter. J Macromol Sci Part B. 1995;34:327–56.

    Article  Google Scholar 

  66. Zhang L, Elupula R, Grayson SM, Torkelson JM. Suppression of the fragility-confinement effect via low molecular weight cyclic or ring polymer topology. Macromolecules. 2017;50:1147–54.

    Article  CAS  Google Scholar 

  67. Angell CA. Relaxation in liquids, polymers and plastic crystals—strong/fragile patterns and problems. J Non-Cryst Solids. 1991;131-133:13–31.

    Article  CAS  Google Scholar 

  68. Roland CM, Nagi KL. Segmental relaxation in poly(dimethylsiloxane). Macromolecules. 1996;29:5747–50.

    Article  CAS  Google Scholar 

  69. Saiter JM, Dargent E, Kattan M, Cabot C, Grenet J. Fragility index of drawn or annealed poly(ethylene terephthalate) films studied by thermally stimulated depolarisation currents. Polymer. 2003;44:3995–4001.

    Article  CAS  Google Scholar 

  70. Kanaya T, Tsukushi I, Kaji K. Non-Gaussian parameter and heterogeneity of amorphous polymers. Prog Theor Phys Supp. 1997;126:133–40.

    Article  CAS  Google Scholar 

  71. Yuan S, Schmidt-Rohr K. Immobilized 13C-labeled polyether chain ends confined to the crystallite surface detected by advanced NMR. Sci Adv. 2020;6:eabc0059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI for Scientific Research (B) (No. JP20H02790) to KT and Scientific Research (B) (No. JP20H02802) to DK from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan. We are also thankful for the support from the JST-Mirai Program (JPMJMI18A2) (K.T.). GIWAXD measurements were carried out at BL03XU at SPring-8 constructed by the Consortium of the Advanced Softmaterial Beamline (FSBL) (Proposal No. 2016A7225, 2016B7273, and 2021A7217).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daisuke Kawaguchi or Keiji Tanaka.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawaguchi, D., Higasayama, A., Ogata, Y. et al. Crystalline structure, molecular motion and photocarrier formation in thin films of monodisperse poly(3-hexylthiophene) with various molecular weights. Polym J 55, 497–505 (2023). https://doi.org/10.1038/s41428-022-00713-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00713-0

This article is cited by

Search

Quick links