Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synchrotron X-ray-analyzed inner structure of polyethylene spherulites and atomistic simulation of a trigger of the lamellar twisting phenomenon

Abstract

To clarify the details of the inner structure of polyethylene spherulites and the mechanism of the lamellar twisting phenomenon, we performed simultaneous step-scan measurements of wide-angle and small-angle X-ray scattering by using a synchrotron X-ray beam of μm size as well as atomistic simulation of the lamellar plate. Assorted new structural information has been extracted: (i) the chain axis is tilted by 15~22° from the normal to the lamellar plane, correcting the previously reported evaluation; (ii) the a- and b-axial lengths of the unit cell change periodically along the radical direction; and (iii) the lamellar twisting pitch is longer in the central part of the spherulite and adopts a constant shorter value in the equilibrated outer part. Second, in association with these experimental results, molecular mechanics calculations were performed to confirm the role of folded chain parts as a trigger of the lamellar twisting phenomenon. The calculated tilting angle of the chain stems was approximately 13°, and the calculated helical pitch for 180o-lamellar twisting was approximately 2 μm, which is in good agreement with the X-ray-observed values.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Crist B, Schultz JM. Polymer spherulites: a critical review. Progr Polym Sci. 2016;56:1–63.

    Article  CAS  Google Scholar 

  2. Xu J, Ye H, Zhang S, Guo B. Organization of twisting lamellar crystals in birefringent banded polymer spherulites: a mini-review. Crystals. 2017;7:241.

    Article  CAS  Google Scholar 

  3. Schultz JM. Self-induced field model for crystal twisting in spherulites. Polymer. 2003;44:433–41.

    Article  CAS  Google Scholar 

  4. Schultz JM. Polymer Crystallization. Oxford Univ. 2001. ISBN 08412-3669-0.

  5. Growth of Polymer Crystals (Handbook of Polymer Crystallization, Chapter 6) edt. by Piorkowska E, Rutledge G, Wiley. 2013. ISBN: 978-0-470-38023-9.

  6. Woo EM, Lugito G. Origins of periodic bands in polymer spherulites. Eur Polym J. 2015;71:27–60.

    Article  CAS  Google Scholar 

  7. Lovinger AJ. Twisted crystals and the origin of banding in spherulites of semicrystalline polymers. Macromolecules. 2020;53:741–45.

    Article  CAS  Google Scholar 

  8. Auriemma F, Alfonso GC, De Rosa C. Polymer Crystallization II: From Chain Microstructure to Processing. Springer. 2016. https://link.springer.com/book/10.1007/978-3-319-50684-5

  9. Meyer A, Yen KC, Li SH, Föster S, Woo EM. Atomic-force and optical microscopy investigations on thin-film morphology of spherulites in melt-crystallized poly(ethylene adipate). Int Eng Chem Res. 2010;49:12084–92.

    Article  CAS  Google Scholar 

  10. Donald AM, Windle AH. An electron diffraction analysis of banded structures in thermotropic polymers. Coll Polym Sci. 1983;261:793–9.

    Article  CAS  Google Scholar 

  11. Sasaki S, Sasaki Y, Takahara A, Kajiyama T. Microscopic lamellar organization in high-density polyethylene banded spherulites studied by scanning probe microscopy. Polymer. 2002;43:3441–6.

    Article  CAS  Google Scholar 

  12. Breedon JE, Jackson JF, Marcinkowski MJ. Study of polyethylene spherulites using scanning electron microscopy. J. Mater. Sci. 1973. https://doi.org/10.1007/BF00632757

  13. Xu J, Guo BH, Zhang JJ, Jiang Y. Direct AFM observation of crystal twisting and organization in banded spherulites of chiral poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Macromolecules. 2004;37:4118–23.

    Article  CAS  Google Scholar 

  14. Ikehara T, Jinnai H, Kaneko T, Nishioka H, Nishi T. Local lamellar structures in banded spherulites analyzed by three-dimensional electron tomography. J Polym Sci B Polym Phys. 2007;45:1122–5.

    Article  CAS  Google Scholar 

  15. Yoffe VS. Uspekhi Khimii. 1944;13:144.

    Google Scholar 

  16. Keller A. The spherulitic structure of crystalline polymers. Part II. The problem of molecular orientation in polymer spherulites. J Polym Sci. 1955;17:351–64.

    Article  CAS  Google Scholar 

  17. Keller A. Investigations on banded spherulites. J Polym Sci. 1959;39:151–73.

    Article  CAS  Google Scholar 

  18. Keith HD, Padden FJ Jr. The optical behavior of spherulites in crystalline polymers. Part I. Calculation of theoretical extinction patterns in spherulites with twisting crystalline orientation. J Polym Sci. 1959;39:101–22.

    Article  CAS  Google Scholar 

  19. Keith HD, Padden Jr FJ. The optical behavior of spherulites in crystalline polymers. Part 11. The growth and structure of the spherulites. J Polym Sci. 1959. https://doi.org/10.1002/pol.1959.1203913510

  20. Hoffman JD, Lauritzen JI Jr. Crystallization of bulk polymers with chain folding: theory of growth of lamellar spherulites. J Res Nat Bur Stand. 1961;65A:297–336.

    Article  CAS  Google Scholar 

  21. Bassett DC, Hodge AM. On lamellar organization in banded spherulites of polyethylene. Polymer. 1978;19:469–72.

    Article  CAS  Google Scholar 

  22. Khoury F. General discussion. Discuss Faraday Soc. 1979. https://doi.org/10.1039/DC9796800365

  23. Frank FC. General introduction. Discuss Faraday Soc. 1979;68:7.

    Article  Google Scholar 

  24. Bassett DC, Hodge AM. On the morphology of melt-crystallized polyethylene I. Lamellar profiles. Proc R Soc Lond A. 1981. https://www.jstor.org/stable/2397204

  25. Bassett DC, Hodge AM, Olley RH. On the morphology of melt-crystallized polyethylene II. Lamellae and their crystallization conditions. Proc R Soc Lond A 1981. https://www.jstor.org/stable/2397205

  26. Bassett DC, Hodge AM. On the morphology of melt-crystallized polyethylene. III. Spherulitic organization. Proc R Soc Lond A. 1981. https://www.jstor.org/stable/2397206

  27. Keith HD, Padden FJ Jr. Twisting orientation and the role of transient states in polymer crystallization. Polymer. 1984;25:28–42.

    Article  CAS  Google Scholar 

  28. Lustiger A, Lotz B, Duff TS. The morphology of the spherulitic surface in polyethylene. J Polym Sci B Polym Phys. 1989;27:561–79.

    Article  CAS  Google Scholar 

  29. Keith HD, Padden FJ Jr, Lotz B, Wittmann JC. Asymmetries of habit in polyethylene crystals grown from the melt. Macromolecules. 1989;22:2230–8.

    Article  CAS  Google Scholar 

  30. Bassett DC, Frank FC, Keller A. Lamellae and their organization in melt-crystallized polymers [and discussion]. Phil Trans R Soc. Lond A. 1994. https://www.jstor.org/stable/54300

  31. Keith HD, Padden FJ Jr. Banding in polyethylene and other spherulites. Macromolecules. 1996;29:7776–86.

    Article  CAS  Google Scholar 

  32. Lotz B, Tierry A, Schneider S. Molecular origin of the scroll-like morphology of lamellae in γPVF2 spherulites. C R Acad Sci. 1998. https://doi.org/10.1016/S1387-1609(99)80015-2

  33. Keith HD. Banding in spherulites: two recurring topics. Polymer. 2001;42:09987–93.

    Article  CAS  Google Scholar 

  34. Bassett DC. Polymer spherulites: a modern assessment. J Macromol Sci Part B Phys. 2003;42:227–56.

    Article  Google Scholar 

  35. Lotz B, Cheng SZD. A critical assessment of unbalanced surface stresses as the mechanical origin of twisting and scrolling of polymer crystals. Polymer. 2005;46:577–610.

    Article  CAS  Google Scholar 

  36. Toda A, Taguchi K, Kajioka H. Instability-driven branching of lamellar crystals in polyethylene spherulites. Macromolecules. 2008;41:7505–12.

    Article  CAS  Google Scholar 

  37. Fujiwara Y. The superstructure of melt-crystallized polyethylene I. Screwlike orientation of unit cell in polyethylene spherulites with periodic extinction rings. J Appl Polym Sci. 1960;4:10–5.

    Article  CAS  Google Scholar 

  38. Gazzano M, Focarete ML, Riekel C, Ripamonti A, Scandola M. Structural investigation of poly(3-hydroxybutyrate) spherulites by microfocus X-ray diffraction. Macromol Chem Phys. 2001;202:1405–9.

    Article  CAS  Google Scholar 

  39. Nozue Y, Kurita R, Hirano S, Kawasaki N, Ueno S, Iida A, et al. Spatial distribution of lamella structure in PCL/PVB band spherulite investigated with microbeam small- and wide-angle X-ray scattering. Polymer. 2003;44:6397–405.

    Article  CAS  Google Scholar 

  40. Tanaka T, Fujita M, Takeuchi A, Suzuki Y, Uesugi K, Doi Y, et al. Structure investigation of narrow banded spherulites in polyhydroxyalkanoates by microbeam X-ray diffraction with synchrotron radiation. Polymer. 2005;46:5673–9.

    Article  CAS  Google Scholar 

  41. Kajioka H, Yoshimoto S, Gosh RC, Taguchi K, Tanaka S, Toda A. Microbeam X-ray diffraction of non-banded polymer spherulites of it-polystyrene and it-poly(butene-1). Polymer. 2010;51:1837–44.

    Article  CAS  Google Scholar 

  42. Kikuzuki T, Shinohara Y, Nozue Y, Ito K, Amemiya Y. Determination of lamellar twisting manner in a banded spherulite with scanning microbeam X-ray scattering. Polymer. 2010;51:1632–8.

    Article  CAS  Google Scholar 

  43. Tashiro K, Yamamoto H, Funaki K, Hu J. Synchrotron microbeam X-ray scattering study of the crystallite orientation in the spherulites of isotactic poly(butene-1) crystallized isothermally at different temperatures. Polym J. 2019;51:143–53.

    Article  CAS  Google Scholar 

  44. Ueno S, Nishida T, Sato K. Synchrotron radiation microbeam X-ray analysis of microstructures and the polymorphic transformation of spherulite crystals of trilaurin. Cryst Growth Des. 2008;8:751–4.

    Article  CAS  Google Scholar 

  45. Ivanov DA, Rosenthal M. Microstructure of banded polymer spherulites: New insights from synchrotron nanofocus X-ray scattering. In Polymer Crystallization II, Advances in Polymer Science Book Series; Finizia A, Giovanni CA, Claudio R, Eds.; Springer: Berlin. 2016. https://www.springerprofessional.de/en/microstructure-of-banded-polymer-spherulites-new-insights-from-s/11954870

  46. Rosenthal M, Bar G, Burghammer M, Ivanov DA. On the nature of chirality imparted to achiral polymers by the crystallization process. Angew Chem. 2011. https://doi.org/10.1002/ange.201102814

  47. Rosenthal M, Anokhin DV, Luchnikov VA, Davis RJ, Riekel C, Burghammer M, et al. Microstructure of banded polymer spherulites: studies with micro-focus X-ray diffraction. IOP Conf Ser: Matter Sci Eng. 2010;14:012014.

    Article  Google Scholar 

  48. Rosenthal M, Burghammer M, Portale G, Bar G, Samulski ET, Ivanov DA. Exploring the origin of crystalline lamella twist in semi-rigid chain polymers: the model of Keith and Padden revisited. Macromolecules. 2012;45:7454–60.

    Article  CAS  Google Scholar 

  49. Rosenthal M, Burghammer M, Bar G, Samulski ET, Ivanov DA. Switching chirality of hybrid left-right helicoids built of achiral polymer chains: when right to left becomes left to right. Macromolecules. 2014. https://doi.org/10.1021/ma501733n

  50. Rosenthal M, Hermandez JJ, Odarchenko YI, Soccio M, Lotti N, Di Cola E, et al. Non-radial growth of helical homopolymer crystals: breaking the paradigm of the polymer spherulite microstructure. Macromol Rapid Commun. 2013;34:1815–9.

    Article  CAS  Google Scholar 

  51. Gazzano M, Focarete ML, Riekel C, Scandola M. Structural Study of Poly(l-lactic acid) Spherulites. Biomacromolecules. 2004;5:553–8.

    Article  CAS  Google Scholar 

  52. Nozue Y, Shinohara Y, Ogawa Y, Sakurai T, Hori H, Kasahara T, et al. Deformation behavior of isotactic polypropylene spherulite during hot drawing investigated by simultaneous microbeam SAXS-WAXS and POM measurement. Macromolecules. 2007;40:2036–45.

    Article  CAS  Google Scholar 

  53. Yagi N, Ohta N, Iida T, Inoue K. A microbeam X-ray diffraction study of insulin spherulites. J Mol Bio. 2006;362:327–33.

    Article  CAS  Google Scholar 

  54. Mahendrasingam A, Martin C, Fuller W, Blundell DJ, MacKerron D, Rule RJ, et al. Microfocus X-ray diffraction of spherulites of poly-3-hydroxybutyrate. Synchrotron Rad. 1995;2:308–12.

    Article  CAS  Google Scholar 

  55. Kolb R, Wutzb C, Stribeckb N, von Krosigkb G, Riekel C. Investigation of secondary crystallization of polymers by means of microbeam X-ray scattering. Polymer. 2001;42:5257–66.

    Article  CAS  Google Scholar 

  56. Khoury F. The spherulitic crystallization of isotactic polypropylene from solution: On the evolution of monoclinic spherulites from dendritic chain-folded crystal precursors. J Res Nat Bur Stand Sec A Phys Chem. 1966;70A:29–61.

    Article  CAS  Google Scholar 

  57. Luchnikov VA, Ivanov DA. Microbeam X-ray diffraction from twisted lamellar crystals: theory and computer simulation. J Appl Cryst. 2009;42:673–80.

    Article  CAS  Google Scholar 

  58. Tashiro K, Yoshioka T, Yamamoto H, Wang H, Woo EM, Funaki K, et al. Relationship between twisting phenomenon and structural discontinuity of stacked lamellae in the spherulite of poly(ethylene adipate) as studied by the synchrotron X-ray microbeam technique. Polym J. 2019;51:131–41.

    Article  CAS  Google Scholar 

  59. Tadokoro H. Recent developments in structure analysis of fibrous polymers, French AD, Gardner KH Ed., ACS Symposium Series. 1980:43–60.

  60. Tashiro K, Ishino K, Ohta T. Temperature dependence of crystal structure of uniaxially-oriented Polyethylene analyzed by an X-ray imaging plate system. Polymer. 1999;40:3469–78.

    Article  CAS  Google Scholar 

  61. Kyu T, Chiu HW, Guenthner AJ, Okabe Y, Saito H, Inoue T. Rhythmic growth of target and spiral spherulites of crystalline polymer blends. Phys Rev Lett. 1999;83:2749–52.

    Article  CAS  Google Scholar 

  62. Raabe D. Coarse-grained cellular automaton simulation of spherulite growth during polymer crystallization. Condensed Matter. 2008. https://doi.org/10.48550/arXiv.0811.1326

  63. Raabe D. Simulation of spherulite growth during polymer crystallization by use of a cellular automaton, materials Science Forum (Bacroix B, Driver JH, Le Gall R, Maurice Cl, Penelle R, Réglé H, Tabourot L.). 2004. https://doi.org/10.4028/www.scientific.net/MSF.467-470.603

  64. Mattozzi A, Minelli M, Hedengvist MS, Gedde UW. Computer-built polyethylene spherulites for mesoscopic Monte Carlo simulation of penetrant diffusion: influence of crystal widening and thickening. Polymer. 2007;48:2453–9.

    Article  CAS  Google Scholar 

  65. Asanishi M, Takaki T, Tomita Y. Polymer Spherulite Growth Simulation during Crystallization by Phase-Field Method, Proceeding, AES-ATEMA’ 2007 International Conference, Montreal, Canada, August 06 -10, 2007:195–203. ISBN 0-9780479.

  66. Nilsson F, Gedde UW, Hedenqvist MS. Penetrant diffusion in polyethylene spherulites assessed by a novel off-lattice Monte-Carlo technique. Eur Polym J. 2009;45:3409–17.

    Article  CAS  Google Scholar 

  67. Wang XD, Ouyang J, Su J, Zhou W. Phase field modeling of the ring-banded spherulites of crystalline polymers: The role of thermal diffusion. Chin Phys B. 2014;23:126103.

    Article  Google Scholar 

  68. Fang A, Haataja M. Simulation study of twisted crystal growth in organic thin films. Phys Rev E. 2015;92:042404.

    Article  Google Scholar 

  69. Cui X, Shtukenberg AG, Freudenthal J, Nichols S, Kahr B. Circular birefringence of banded spherulites. J Am Chem Soc. 2014;136:5481–90.

    Article  CAS  Google Scholar 

  70. Sun CY, Cayla LG, Stifler A, Rajesh TZ, Chopdekar V, Tamura N, et al. Crystal nucleation and growth of spherulites demonstrated by coral skeletons and phase-field simulations. Acta Biomat. 2020;23:277–92.

    Google Scholar 

  71. Keith HD, Padden FJ Jr. Note on the origin of twisting orientation in fibrillar crystals. J Polym Sci. 1961;51:S4–7.

    Article  CAS  Google Scholar 

  72. Okano K. Note on the lamellar twist in polymer spherulites. Jpn J Appl Phys. 1964;3:351–53.

    Article  CAS  Google Scholar 

  73. Bunn CW. The crystal structure of long-chain normal Paraffin Hydrocarbons, the Shape of the >CH2 Group. Trans Faraday Soc. 1939;35:482–91.

    Article  CAS  Google Scholar 

  74. Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applications-overview with details on alkane and benzene compound. J Phys Chem B. 1998;102:7338–64.

    Article  CAS  Google Scholar 

  75. Tadokoro H. Structure of Crystalline Polymers. John Wiley & Sons, New York, 1979. ISBN-10 ‏.0471023566

  76. Tracz A, Ungar G. AFM study of lamellar structure of melt-crystallized n-Alkane C390H782. Macromolecules. 2005;38:4962–5.

    Article  CAS  Google Scholar 

  77. Sujeewa D, de Silva M, Zeng XB, Ungar G, Spells SJ. Chain tilt and surface disorder in lamellar crystals. A FTIR and SAXS Study of Labeled Long Alkanes. Macromolecules. 2002. https://doi.org/10.1021/ma0206669

  78. Kaji KS. Determination of the elastic modulus of polyamide crystals along the chain axis by X-ray Diffraction, 1. Makromol Chem. 1978;179:209–17.

    Article  CAS  Google Scholar 

  79. Tashiro K, Kobayashi M, Tadokoro H. Calculation of three-dimensional elastic constants of polymer crystals. 2. Application to Orthorhombic Polyethylene and Poly(vinyl alcohol). Macromolecules. 1978. https://doi.org/10.1021/ma60065a014

  80. Franců J, Nováčková P, Janíček P. Torsion of a non-circular bar. Eng Mech. 2012;19:45–60. https://www.engineeringmechanics.cz/obsahy.html?R=19&C=1

    Google Scholar 

  81. Sasaki S, Tashiro K, Gose N, Imanishi K, Izuchi M, Kobayashi M, et al. Spatial distribution of chain stems and chain folding mode in polyethylene lamellae as revealed by coupled information of DSC, FTIR, SANS and WANS. Polym J. 1999;31:677–86.

    Article  CAS  Google Scholar 

  82. Tashiro K. Molecular dynamics calculation to clarify the relationship between structure and mechanical properties of polymer crystals: the case of orthorhombic polyethylene. Comp Theor Polym Sci. 2001;11:357–74.

    Article  CAS  Google Scholar 

  83. Ikehara T, Kataoka T, Inutsuka M, Jin RH. Chiral nucleating agents affecting the handedness of lamellar twist in the banded spherulites in Poly(ε-Caprolactone)/Poly(Vinyl Butyral) Blends. ACS Macro Lett. 2019;8:871–4.

    Article  CAS  Google Scholar 

  84. Toda A, Arita T, Hikosaka M. Three-dimensional morphology of PVDF single crystals forming banded spherulites. Polymer. 2001;42:2223–33.

    Article  CAS  Google Scholar 

  85. Maillard D, Prud’homme RE. Crystallization of Ultrathin Films of Polylactides: from chain chirality to lamella curvature and twisting. Macromolecules. 2008;41:1705–12.

    Article  CAS  Google Scholar 

  86. Woo EM, Lugito G, Tsai JH, Muller AJ. Hierarchically diminishing chirality effects on lamellar assembly in spherulites comprising chiral polymers. Macromolecules. 2016;49:2698–708.

    Article  CAS  Google Scholar 

  87. Wang HF, Chiang CH, Hsu WC, Wen T, Chuang WT, Lotz B, et al. Handedness of Twisted Lamella in Banded Spherulite of Chiral Polylactides and Their Blends. Macromolecules. 2017. https://doi.org/10.1021/acs.macromol.7b00318

Download references

Acknowledgements

This work was performed at beamline 03XU of SPring-8, Harima, Japan, with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposal Nos. 2013A7214, 2013B7262, 2014B7262, 2015B7262, 2016A7212, 2017A7211, 2017B7263, 2018B7263, 2019B7261 and 2020A7225).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Tashiro.

Ethics declarations

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41428_2022_710_MOESM1_ESM.pdf

Snapshots of the Simultaneous Measurement System of WAXD and SAXS Patterns Using a Synchrotron X-ray Micro-Beam at BL03XU, SPring-8

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, H., Yoshioka, T., Funaki, K. et al. Synchrotron X-ray-analyzed inner structure of polyethylene spherulites and atomistic simulation of a trigger of the lamellar twisting phenomenon. Polym J 55, 27–43 (2023). https://doi.org/10.1038/s41428-022-00710-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00710-3

This article is cited by

Search

Quick links