Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis of head-to-tail regioregular poly(3-hexylthiophene)s with controlled molecular weight via highly selective direct arylation polymerization (DArP)

Abstract

In this study, we succeeded in controlling the molecular weight of head-to-tail (HT) regioregular poly(3-hexylthiophene) (P3HT) via palladium-catalyzed direct arylation polymerization (DArP). The key to success was using 2-phenylthiazole (2), which has a highly reactive C–H bond for direct arylation, as the end-capping reagent. The DArP of 2-bromo-3-hexylthiophene (1) in the presence of 2 ([1]0/[2]0 = 10–80), Herrmann-Beller catalyst, and P(o-Me2NC6H4)3 (L1) afforded HT-regioregular P3HT (HT = 99%) capped with a 2-phenylthiazole-5-yl group. The number-average molecular weight (Mn) of P3HT agreed well with the value calculated by assuming formation of one polymer chain per molecule of 2 (polydispersity index: Ð = 1.8–2.1). Thus, the Mn value could be controlled by adjusting the initial molar ratio of 1 to 2. We also succeeded in controlling the molecular weight of poly(3-alkylthiophene)s (alkyl = butyl and octyl) with DArP using 2 as the end-capping reagent.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Scheme 2
Scheme 3

Similar content being viewed by others

References

  1. McCullough RD. The chemistry of conducting polythiophenes. Adv Mater. 1998;10:93–116.

    Article  CAS  Google Scholar 

  2. Osaka I, McCullough RD. Advances in molecular design and synthesis of regioregular polythiophenes. Acc Chem Res. 2008;41:1202–14.

    Article  CAS  PubMed  Google Scholar 

  3. Agbolaghia S, Zenoozi SA. Comprehensive review on poly(3-alkylthiophene)-based crystalline structures, protocols and electronic applications. Org Electron. 2017;51:362–403.

    Article  Google Scholar 

  4. Guo X, Facchetti A. The journey of conducting polymers from discovery to application. Nat Mater. 2020;19:922–8.

    Article  CAS  PubMed  Google Scholar 

  5. Chen TA, Rieke RD. The first regioregular head-to-tail poly(3-Hexylthiophene-2,5-Diyl) and a regiorandom isopolymer: nickel versus palladium catalysis of 2(5)-bromo-5(2)-(bromozincio)-3-hexylthiophene polymerization. J Am Chem Soc. 1992;114:10087–8.

    Article  CAS  Google Scholar 

  6. McCullough RD, Lowe RD. Enhanced electrical conductivity in regioselectively synthesized poly(3-alkylthiophenes). J Chem Soc Chem Commun. 1992;70–2.

  7. Kim Y, Cook S, Tuladhar SM, Choulis SA, Nelson J, Durrant JR, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene: fullerene solar cells. Nat Mater. 2006;5:197–203.

    Article  CAS  Google Scholar 

  8. Woo CH, Thompson BC, Kim BJ, Toney MF, Fréchet JMJ. The influence of poly(3-hexylthiophene) regioregularity on fullerene-composite solar cell performance. J Am Chem Soc. 2008;130:16324–9.

    Article  CAS  PubMed  Google Scholar 

  9. Snyder CR, Henry JS, DeLongchamp DM. Effect of regioregularity on the semicrystalline structure of poly(3-hexylthiophene). Macromolecules. 2011;44:7088–91.

    Article  CAS  Google Scholar 

  10. Kohn P, Huettner S, Komber H, Senkovskyy V, Tkachov R, Kiriy A, et al. On the role of single regiodefects and polydispersity in regioregular poly(3-hexylthiophene): defect distribution, synthesis of defect-free chains, and a simple model for the determination of crystallinity. J Am Chem Soc. 2012;134:4790–805.

    Article  CAS  PubMed  Google Scholar 

  11. Kim JS, Kim JH, Lee W, Yu H, Kim HJ, Song I, et al. Tuning mechanical and optoelectrical properties of poly(3-hexylthiophene) through systematic regioregularity control. Macromolecules. 2015;48:4339–46.

    Article  CAS  Google Scholar 

  12. Zen A, Pflaum J, Hirschmann S, Zhuang W, Jaiser F, Asawapirom U, et al. Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv Funct Mater. 2004;14:757–64.

    Article  CAS  Google Scholar 

  13. Kline RJ, McGehee MD, Kadnikova EN, Liu J, Frechet JMJ, Toney MF. Dependence of regioregular poly(3-hexylthiophene) film morphology and field-effect mobility on molecular weight. Macromolecules. 2005;38:3312–9.

    Article  CAS  Google Scholar 

  14. Schilinsky P, Asawapirom U, Scherf U, Biele M, Brabec CJ. Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chem Mater 2005;17:2175–80.

    Article  CAS  Google Scholar 

  15. Ballantyne AM, Chen L, Dane J, Hammant T, Braun FM, Heeney M, et al. The effect of poly(3-hexylthiophene) molecular weight on charge transport and the performance of polymer: fullerene solar cells. Adv Funct Mater 2008;18:2373–80.

    Article  CAS  Google Scholar 

  16. Koppe M, Brabec CJ, Heiml S, Schausberger A, Duffy W, Heeney M, et al. Influence of molecular weight distribution on the gelation of P3HT and its impact on the photovoltaic performance. Macromolecules. 2009;42:4661–6.

    Article  CAS  Google Scholar 

  17. Spoltore D, Vangerven T, Verstappen P, Piersimoni F, Bertho S, Vandewal K, et al. Effect of molecular weight on morphology and photovoltaic properties in P3HT:PCBM solar cells. Org Electron. 2015;21:160–70.

    Article  CAS  Google Scholar 

  18. Mardi S, Pea M, Notargiacomo A, Yaghoobi Nia N, Di Carlo A, Reale A. The molecular weight dependence of thermoelectric properties of poly (3-hexylthiophene). Materials. 2020;13:1404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yaghoobi Nia N, Bonomo M, Zendehdel M, Lamanna E, Desoky MMH, Paci B, et al. Impact of P3HT regioregularity and molecular weight on the efficiency and stability of perovskite solar cells. ACS Sustain Chem Eng. 2021;9:5061–73.

    Article  CAS  Google Scholar 

  20. Yokoyama A, Miyakoshi R, Yokozawa T. Chain-growth polymerization for poly(3-hexylthiophene) with a defined molecular weight and a low polydispersity. Macromolecules. 2004;37:1169–71.

    Article  CAS  Google Scholar 

  21. Sheina EE, Liu J, Iovu MC, Laird DW, McCullough RD. Chain growth mechanism for regioregular nickel-initiated cross-coupling polymerizations. Macromolecules. 2004;37:3526–8.

    Article  CAS  Google Scholar 

  22. Okamoto K, Luscombe CK. Controlled polymerizations for the synthesis of semiconducting conjugated polymers. Polym Chem 2011;2:2424–34.

    Article  CAS  Google Scholar 

  23. Kiriy A, Senkovskyy V, Sommer M. Kumada catalyst-transfer polycondensation: mechanism, opportunities, and challenges. Macromol Rapid Commun. 2011;32:1503–17.

    Article  CAS  PubMed  Google Scholar 

  24. Yokozawa T, Ohta Y. Transformation of step-growth polymerization into living chain-growth polymerization. Chem Rev. 2016;116:1950–68.

    Article  CAS  PubMed  Google Scholar 

  25. Leone AK, Mueller EA, McNeil AJ. The history of palladium-catalyzed cross-couplings should inspire the future of catalyst-transfer. Polymerization J Am Chem Soc. 2018;140:15126–39.

    Article  CAS  PubMed  Google Scholar 

  26. Wang Q, Takita R, Kikuzaki Y, Ozawa F. Palladium-catalyzed dehydrohalogenative polycondensation of 2-bromo-3-hexylthiophene: an efficient approach to head-to-tail poly(3-hexylthiophene). J Am Chem Soc. 2010;132:11420–1.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Q, Wakioka M, Ozawa F. Synthesis of end-capped regioregular poly(3-hexylthiophene)s via direct arylation. Macromol Rapid Commun. 2012;33:1203–7.

    Article  PubMed  Google Scholar 

  28. Pouliot JR, Wakioka M, Ozawa F, Li Y, Leclerc M. Structural analysis of poly(3-hexylthiophene) prepared via direct heteroarylation polymerization. Macromol Chem Phys. 2016;217:1493–500.

    Article  CAS  Google Scholar 

  29. Rudenko AE, Thompson BC. Optimization of direct arylation polymerization (DArP) through the identification and control of defects in polymer structure. J Polym Sci, Part A: Polym Chem. 2015;53:135–47.

    Article  CAS  Google Scholar 

  30. Bura T, Blaskovits JT, Leclerc M. Direct (hetero)arylation polymerization: trends and perspectives. J Am Chem Soc. 2016;138:10056–71.

    Article  CAS  PubMed  Google Scholar 

  31. Pouliot JR, Grenier F, Blaskovits JT, Beaupré S, Leclerc M. Direct (hetero)arylation polymerization: simplicity for conjugated polymer synthesis. Chem Rev. 2016;116:14225–74.

    Article  CAS  PubMed  Google Scholar 

  32. Wakioka M, Ozawa F. Highly efficient catalysts for direct arylation polymerization (DArP). Asian J Org Chem. 2018;7:1206–16.

    Article  CAS  Google Scholar 

  33. Kuwabara J, Kanbara T. Facile synthesis of π-conjugated polymers via direct arylation polycondensation. Bull Chem Soc Jpn. 2019;92:152–61.

    Article  CAS  Google Scholar 

  34. Leclerc M, Brassard S, Beaupré S. Direct (hetero)arylation polymerization: toward defect-free conjugated polymers. Polym J. 2020;52:13–20.

    Article  CAS  Google Scholar 

  35. Iizuka E, Wakioka M, Ozawa F. mixed-ligand approach to palladium-catalyzed direct arylation polymerization: synthesis of donor–acceptor polymers with dithienosilole (DTS) and thienopyrroledione (TPD) units. Macromolecules. 2015;48:2989–93.

    Article  CAS  Google Scholar 

  36. Iizuka E, Wakioka M, Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: effective prevention of structural defects using diamines. Macromolecules. 2016;49:3310–7.

    Article  CAS  Google Scholar 

  37. Wakioka M, Takahashi R, Ichihara N, Ozawa F. Mixed-ligand approach to palladium-catalyzed direct arylation polymerization: highly selective synthesis of π-conjugated polymers with diketopyrrolopyrrole units. Macromolecules. 2017;50:927–34.

    Article  CAS  Google Scholar 

  38. Wakioka M, Nakamura Y, Hihara Y, Ozawa F, Sakaki S. Factors controlling the reactivity of heteroarenes in direct arylation with arylpalladium acetate complexes. Organometallics. 2013;32:4423–30.

    Article  CAS  Google Scholar 

  39. Herrmann WA, Brossmer C, Reisinger CP, Riermeier TH, Öfele K, Beller M. Palladacycles: efficient new catalysts for the heck vinylation of aryl halides. Chem Eur J. 1997;3:1357–64.

    Article  CAS  Google Scholar 

  40. Fritz HP, Gordon IR, Schwarzhans KE, Venanzi LM. Some complexes of palladium(II) and platinum(II) with mixed phosphorus-nitrogen ligands. J Chem Soc. 1965;5210–6.

  41. Chen CA, Yang PC, Wang SC, Tung SH, Su WF. Side chain effects on the optoelectronic properties and self-assembly behaviors of terthiophene–thieno[3,4-c]pyrrole-4,6-dione based conjugated polymers. Macromolecules. 2018;51:7828–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by KAKENHI (JP24750088, JP15K17855, JP21K05167, and 17H03055) from the Japan Society for the Promotion of Science and the ACT-C program of the Japan Science and Technology Agency. We would like to thank Mr. K. Hatakeyama (Kitasato Univ.) for support in preparing the monomers. We gratefully acknowledge Dr. R. S. Jensen (The Chemical Society of Japan) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Masayuki Wakioka or Fumiyuki Ozawa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wakioka, M., Xu, K., Taketani, T. et al. Synthesis of head-to-tail regioregular poly(3-hexylthiophene)s with controlled molecular weight via highly selective direct arylation polymerization (DArP). Polym J 55, 387–394 (2023). https://doi.org/10.1038/s41428-022-00707-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00707-y

Search

Quick links