Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Synthesis and solar cell applications of semiconducting polymers based on vinylene-bridged 5-alkoxy-6-fluorobenzo[c][1,2,5]thiadiazole (FOBTzE)

Abstract

To improve the strong aggregation behavior and molecular orientation of the previously reported polymer PFE4T with vinylene-bridged 5,6-difluorobenzo[c][1,2,5]thiadiazole (FBTzE), we designed and synthesized a vinylene-bridged 5-alkoxy-6-fluorobenzo[c][1,2,5]thiadiazole (FOBTzE) moiety as a novel electron acceptor unit and its copolymer PFOE4T. By installing a strong electron-donating alkoxy group into the FBTzE framework instead of an electron-withdrawing fluorine atom, the highest occupied molecular orbital (HOMO) energy level of the resulting polymer PFOE4T was found to be ca. 0.1 eV higher than that of the previously reported polymer PFE4T but comparable to that of typical difluorobenzothiadiazole-based polymers. On the other hand, the introduction of alkoxy side chains reduced the strong aggregation tendency and changed the molecular orientation of the polymers from edge-on to bimodal orientation, providing a uniform polymer blended film with PC61BM and enhancing carrier transport. These results indicate that the fabricated PFOE4T/PC61BM-based solar cells exhibited a power conversion efficiency of 4.52% with a high fill factor (FF) of 0.68. However, because PFOE4T still has strong aggregation and low solubility, the PFOE4T/PC61BM blended film formed a large phase separation, resulting in limited short-circuit current density (Jsc) and PCE.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cheng Y-J, Yang S-H, Hsu C-S. Synthesis of conjugated polymers for organic solar cell applications. Chem Rev. 2009;109:5868–923.

    Article  CAS  PubMed  Google Scholar 

  2. Zhou H, Yang L, You W. Rational design of high performance conjugated polymers for organic solar cells. Macromolecules. 2012;45:607–32.

    Article  CAS  Google Scholar 

  3. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L. Recent advances in bulk heterojunction polymer solar cells. Chem Rev. 2015;115:12666–731.

    Article  CAS  PubMed  Google Scholar 

  4. Cai Y, Huo L, Sun Y. Recent advances in wide-bandgap photovoltaic polymers. Adv Mater. 2017;29:1605437.

    Article  Google Scholar 

  5. Cui C, Li Y. High-performance conjugated polymer donor materials for polymer solar cells with narrow-bandgap nonfullerene acceptors. Energy Environ Sci. 2019;12:3225–46.

    Article  CAS  Google Scholar 

  6. Mori H, Nishihara Y. Low-bandgap semiconducting polymers based on sulfur-containing phenacene-type molecules for transistor and solar cell applications. Polym J. 2018;50:615–25.

    Article  CAS  Google Scholar 

  7. Saito M, Ohkita H, Osaka I. π-Conjugated polymers and molecules enabling small photon energy loss simultaneously with high efficiency in organic photovoltaics. J Mater Chem A. 2020;8:20213–37.

    Article  CAS  Google Scholar 

  8. Scharber MC, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, et al. Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv Mater. 2006;18:789–94.

    Article  CAS  Google Scholar 

  9. Dennler G, Scharber MC, Brabec CJ. Polymer-fullerene bulk-heterojunction solar cells. Adv Mater. 2009;21:1323–38.

    Article  CAS  Google Scholar 

  10. Yao J, Kirchartz T, Vezie MS, Faist MA, Gong W, He Z, et al. Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys Rev Appl. 2015;4:014020.

    Article  Google Scholar 

  11. Menke SM, Ran NA, Bazan GC, Friend RH. Understanding energy loss in organic solar cells: toward a new efficiency regime. Joule. 2018;2:25–35.

    Article  CAS  Google Scholar 

  12. Zhang G, Zhao J, Chow PCY, Jiang K, Zhang J, Zhu Z, et al. Nonfullerene acceptor molecules for bulk heterojunction organic solar cells. Chem Rev. 2018;118:3447–507.

    Article  CAS  PubMed  Google Scholar 

  13. Fu H, Wang Z, Sun Y. Polymer donors for high-performance non-fullerene organic solar cells. Angew Chem Int Ed. 2019;58:4442–53.

    Article  CAS  Google Scholar 

  14. Osaka I, Takimiya K. Backbone orientation in semiconducting polymers. Polymer. 2015;59:A1–A15.

    Article  CAS  Google Scholar 

  15. Huang Y, Kramer EJ, Heeger AJ, Bazan GC. Bulk heterojunction solar cells: morphology and performance relationships. Chem Rev. 2014;114:7006–43.

    Article  CAS  PubMed  Google Scholar 

  16. Ye L, Collins BA, Jiao X, Zhao J, Yan H, Ade H. Miscibility-function relations in organic solar cells: significance of optimal miscibility in relation to percolation. Adv Energy Mater. 2018;8:1703058.

    Article  Google Scholar 

  17. Lee H, Park C, Sin DH, Park JH, Cho K. Recent advances in morphology optimization for organic photovoltaics. Adv Mater. 2018;30:1800453.

    Article  Google Scholar 

  18. Mori H, Takahashi R, Hyodo K, Nishinaga S, Sawanaka Y, Nishihara Y. Phenanthrodithiophene (PDT)−difluorobenzothiadiazole (DFBT) copolymers: Effect on molecular orientation and solar cell performance of alkyl substitution onto a PDT core. Macromolecules. 2018;51:1357–69.

    Article  CAS  Google Scholar 

  19. Wang Y, Michinobu T. Benzothiadiazole and its π-extended, heteroannulated derivatives: useful acceptor building blocks for high-performance donor-acceptor polymers in organic electronics. J Mater Chem C. 2016;4:6200–14.

    Article  CAS  Google Scholar 

  20. Wang C, Liu F, Chen Q-M, Xiao C-Y, Wu Y-G, Li W-W. Benzothiadiazole-based conjugated polymers for organic solar cells. Chin J Polym Sci. 2021;39:525–36.

    Article  Google Scholar 

  21. Lee W, Kim G-H, Ko S-J, Yum S, Hwang S, Cho S, et al. Semicrystalline D−A copolymers with different chain curvature for applications in polymer optoelectronic devices. Macromolecules. 2014;47:1604–12.

    Article  CAS  Google Scholar 

  22. Kini GP, Oh S, Abbas Z, Rasool S, Jahandar M, Song CE, et al. Effects on photovoltaic performance of dialkyloxy-benzothiadiazole copolymers by varying the thienoacene donor. ACS Appl Mater Interfaces. 2017;9:12617–28.

    Article  CAS  PubMed  Google Scholar 

  23. Ko S-J, Hoang QV, Song CE, Uddin MA, Lim E, Park SY, et al. High-efficiency photovoltaic cells with wide optical band gap polymers based on fluorinated phenylene-alkoxybenzothiadiazole. Energy Environ Sci. 2017;10:1443–55.

    Article  CAS  Google Scholar 

  24. Lin Y, Zhao F, Wu Y, Chen K, Xia Y, Li G, et al. Mapping polymer donors toward high-efficiency fullerene free organic solar cells. Adv Mater. 2017;29:1604155.

    Article  Google Scholar 

  25. Casey A, Ashraf RS, Fei Z, Heeney M. Thioalkyl-substituted benzothiadiazole acceptors: copolymerization with carbazole affords polymers with large stokes shifts and high solar cell voltages. Macromolecules. 2014;47:2279–88.

    Article  CAS  Google Scholar 

  26. Chen Z, Cai P, Chen J, Liu X, Zhang L, Lan L, et al. Low band-gap conjugated polymers with strong interchain aggregation and very high hole mobility towards highly efficient thick-film polymer solar cells. Adv Mater. 2014;26:2586–91.

    Article  CAS  PubMed  Google Scholar 

  27. Liu Y, Zhao J, Li Z, Mu C, Ma W, Hu H, et al. Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat Commun. 2014;5:5293.

    Article  CAS  PubMed  Google Scholar 

  28. Zhao J, Li Y, Yang G, Jiang K, Lin H, Ade H, et al. Efficient organic solar cells processed from hydrocarbon solvents. Nat Energy. 2016;1:15027.

    Article  CAS  Google Scholar 

  29. Mori H, Nonobe H, Nishihara Y. Highly crystalline, low band-gap semiconducting polymers based on phenanthrodithiophene-benzothiadiazole for solar cells and transistors. Polym Chem. 2016;7:1549–58.

    Article  CAS  Google Scholar 

  30. Feng L-W, Chen J, Mukherjee S, Sangwan VK, Huang W, Chen Y, et al. Readily accessible benzo[d]thiazole polymers for nonfullerene solar cells with >16% efficiency and potential pitfalls. ACS Energy Lett. 2020;5:1780–7.

    Article  CAS  Google Scholar 

  31. Hu Z, Chen H, Qu J, Zhong X, Chao P, Xie M, et al. Design and synthesis of chlorinated benzothiadiazole-based polymers for efficient solar energy conversion. ACS Energy Lett. 2017;2:753–8.

    Article  CAS  Google Scholar 

  32. Yang Z, Chen H, Wang H, Mo D, Liu L, Chao P, et al. The integrated adjustment of chlorine substitution and two-dimensional side chain of low band gap polymers in organic solar cells. Polym Chem. 2018;9:940–7.

    Article  CAS  Google Scholar 

  33. Olla T, Ibraikulov OA, Ferry S, Boyron O, Méry S, Heinrich B, et al. Benzothiadiazole halogenation impact in conjugated polymers, a comprehensive study. Macromolecules. 2019;52:8006–16.

    Article  CAS  Google Scholar 

  34. Kini GP, Choi JY, Jeon SJ, Suh IS, Moon DK. Effect of mono alkoxy-carboxylate-functionalized benzothiadiazole-based donor polymers for non-fullerene solar cells. Dyes Pigments. 2019;164:62–71.

    Article  CAS  Google Scholar 

  35. Casey A, Han Y, Fei Z, White AJP, Anthopoulos TD, Heeney M. Cyano substituted benzothiadiazole: a novel acceptor inducing n-type behaviour in conjugated polymers. J Mater Chem C. 2015;3:265–75.

    Article  CAS  Google Scholar 

  36. Shi S, Chen P, Chen Y, Feng K, Liu B, Chen J, et al. A narrow-bandgap n-type polymer semiconductor enabling efficient all-polymer solar cells. Adv Mater. 2019;31:1905161.

    Article  CAS  Google Scholar 

  37. Li G, Kang C, Gong X, Zhang J, Li C, Chen Y, et al. 5‑Alkyloxy-6-fluorobenzo[c][1,2,5]thiadiazole- and silafluorene-based D−A alternating conjugated polymers: synthesis and application in polymer photovoltaic cells. Macromolecules. 2014;47:4645–52.

    Article  CAS  Google Scholar 

  38. Asanuma Y, Mori H, Takahashi R, Nishihara Y. Vinylene-bridged difluorobenzo[c][1,2,5]thiadiazole (FBTzE): a new electron-deficient building block for high-performance semiconducting polymers in organic electronics. J Mater Chem C. 2019;7:905–16.

    Article  CAS  Google Scholar 

  39. Asanuma Y, Mori H, Nishihara Y. Transistor properties of semiconducting polymers based on vinylene-bridged difluorobenzo[c][1,2,5]thiadiazole (FBTzE). Chem Lett. 2019;48:1029–31.

    Article  CAS  Google Scholar 

  40. Mori H. Development of semiconducting polymers based on a novel heteropolycyclic aromatic framework. Polym J. 2021;53:975–87.

    Article  CAS  Google Scholar 

  41. Zhang J, Zhang X, Li G, Xiao H, Li W, Xie S, et al. A nonfullerene acceptor for wide band gap polymer based organic solar cells. Chem Commun. 2016;52:469–72.

    Article  CAS  Google Scholar 

  42. Li G, Zhao B, Kang C, Lu Z, Li C, Dong H, et al. Side chain influence on the morphology and photovoltaic performance of 5‑fluoro-6-alkyloxybenzothiadiazole and benzodithiophene based conjugated polymers. ACS Appl Mater Interfaces. 2015;7:10710–7.

    Article  CAS  PubMed  Google Scholar 

  43. Zhou Y, Li M, Guo Y, Lu H, Song J, Bo Z, et al. Dibenzopyran-based wide band gap conjugated copolymers: structural design and application for polymer solar cells. ACS Appl Mater Interfaces. 2016;8:31348–58.

    Article  CAS  PubMed  Google Scholar 

  44. Gong X, Li G, Wu Y, Zhang J, Feng S, Liu Y, et al. Enhancing the performance of polymer solar cells by using donor polymers carrying discretely distributed side chains. ACS Appl Mater Interfaces. 2017;9:24020–6.

    Article  CAS  PubMed  Google Scholar 

  45. Huang H, Yang L, Facchetti A, Marks TJ. Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem Rev. 2017;117:10291–318.

    Article  CAS  PubMed  Google Scholar 

  46. Fujihara T, Yoshida A, Satou M, Tanji Y, Terao J, Tsuji Y. Steric effect of carboxylic acid ligands on Pd-catalyzed C–H activation reactions. Catal Commun. 2016;84:71–4.

    Article  CAS  Google Scholar 

  47. Mori H, Nishinaga S, Takahashi R, Nishihara Y. Alkoxy-substituted anthra[1,2‑c:5,6‑c’]bis([1,2,5]thiadiazole) (ATz): A new electron-acceptor unit in the semiconducting polymers for organic electronics. Macromolecules. 2018;51:5473–84.

    Article  CAS  Google Scholar 

  48. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, et al. Gaussian 09, Revision D.01. Wallingford, CT: Gaussian, Inc.; 2013.

  49. Mori H, Hara S, Nishinaga S, Nishihara Y. Solar cell performance of phenanthrodithiophene−isoindigo copolymers depends on their thin-film structure and molecular weight. Macromolecules. 2017;50:4639–48.

    Article  CAS  Google Scholar 

  50. Kini GP, Lee SK, Shin WS, Moon S-J, Song CE, Lee J-C. Achieving a solar power conversion efficiency exceeding 9% by modifying the structure of a simple, inexpensive and highly scalable polymer. J Mater Chem A. 2016;4:18585–97.

    Article  CAS  Google Scholar 

  51. Tanji Y, Mitsutake N, Fujihara T, Tsuji Y. Steric effect of carboxylate ligands on Pd-catalyzed intramolecular C(sp2)–H and C(sp3)–H arylation reactions. Angew Chem Int Ed. 2018;57:10314–7.

    Article  CAS  Google Scholar 

  52. Wen T-J, Liu Z-X, Chen Z, Zhou J, Shen Z, Xiao Y, et al. Simple non-fused electron acceptors leading to efficient organic photovoltaics. Angew Chem Int Ed. 2021;60:12964–70.

    Article  CAS  Google Scholar 

  53. Bondi A. van der Waals volumes and radii. J Phys Chem. 1964;68:441–51.

    Article  CAS  Google Scholar 

  54. Tress W, Petrich A, Hummert M, Hein M, Leo K, Riede M. Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells. Appl Phys Lett. 2011;98:063301.

    Article  Google Scholar 

  55. Zhang X, Richter LJ, DeLongchamp DM, Kline RJ, Hammond MR, McCulloch I, et al. Molecular packing of high-mobility diketopyrrolo-pyrrole polymer semiconductors with branched alkyl side chains. J Am Chem Soc. 2011;133:15073–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by Grant-in-Aid for Young Scientists (No. 19K15650) from the Japan Society for the Promotion of Science, Okayama Prefecture Industrial Promotion Foundation, and the Yakumo Foundation for Environmental Science. The GIWAXS experiments were performed at BL13XU and BL46XU of SPring-8 with the approval of the Japan Synchrotron Radiation Research Institute (JASRI) (Proposals 2019A1765 and 2022A1656). We are grateful to Prof. Itaru Osaka, and Dr. Masahiko Saito (Hiroshima University), as well as Dr. Tomoyuki Koganezawa (JASRI), for measurements of GIWAXS images; Prof. Koichi Mitsudo and Prof. Seiji Suga (Okayama University) for CV measurements; Prof. Tsutomu Ono and Prof. Takaichi Watanabe (Okayama University) for DSC measurements; Prof. Naoshi Ikeda (Okayama University) for AFM images; Prof. Yoshihiro Kubozono (Okayama University) for thickness measurements; and Megumi Kosaka and Motonari Kobayashi at the Department of Instrumental Analysis, Advanced Science Research Center, Okayama University, for elemental analysis measurements. We also thank the SC-NMR Laboratory of Okayama University for the NMR spectral measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiroki Mori or Yasushi Nishihara.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, H., Asanuma, Y., Hosogi, R. et al. Synthesis and solar cell applications of semiconducting polymers based on vinylene-bridged 5-alkoxy-6-fluorobenzo[c][1,2,5]thiadiazole (FOBTzE). Polym J 55, 405–415 (2023). https://doi.org/10.1038/s41428-022-00706-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00706-z

Search

Quick links