Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of optically active through-space conjugated polymers consisting of planar chiral pseudo-meta-disubstituted [2.2]paracyclophane


The polymerization of enantiopure pseudo-meta-diethynyl[2.2]paracyclophane with a diiodobenzene derivative was carried out through Sonogashira-Hagihara cross-coupling. The synthesized polymers consisted of three-ring para-phenylene-ethynylene π-electron systems that were stacked on each other at the terminal benzenes. The electrical photoconductivities of the pseudo-meta-linked and pseudo-para-linked polymers were examined. The corresponding optically active pseudo-meta-linked dimers were prepared, and their optical and chiroptical properties were compared with those of the pseudo-para- and pseudo-ortho-linked dimers. Optically active pseudo-meta-linked dimers and polymers emitted intense circularly polarized luminescence (CPL) with relatively high anisotropy factors on the order of 10–3. The CPL behavior of the optically active pseudo-meta-linked dimer was simulated using time-dependent density functional theory calculations.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. Vögtle, F. Cyclophane Chemistry: Synthesis, Structures and Reactions. John Wiley & Sons: Chichester; 1993.

  2. Gleiter, R, Hopf H. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004.

  3. Hopf H. [2.2]Paracyclophanes in Polymer Chemistry and Materials Science. Angew Chem Int Ed. 2008;47:9808–12.

    Article  CAS  Google Scholar 

  4. Brown CJ, Farthing AC. Preparation and structure of Di-p-Xylylene. Nature. 1949;164:915–6.

    Article  CAS  Google Scholar 

  5. Cram DJ, Steinberg H. Macro Rings. I. Preparation and spectra of the paracyclophanes. J Am Chem Soc. 1951;73:5691–704.

    Article  CAS  Google Scholar 

  6. Wang S, Bazan GC, Tretiak S, Mukamel S. Oligophenylenevinylene Phane Dimers: probing the effect of contact site on the optical properties of bichromophoric pairs. J Am Chem Soc. 2000;122:1289–97.

    Article  CAS  Google Scholar 

  7. Bartholomew GP, Bazan GC. Bichromophoric paracyclophanes: models for interchromophore delocalization. Acc Chem Res. 2001;34:30–9.

    Article  CAS  PubMed  Google Scholar 

  8. Bartholomew GP, Bazan GC. Strategies for the Synthesis of ‘Through-space’ Chromophore Dimers Based on [2.2]Paracyclophane. Synthesis. 2002;1245–55.

  9. Hong JW, Woo HY, Bazan GC. Solvatochromism of distyrylbenzene pairs bound together by [2.2]Paracyclophane: evidence for a polarizable “Through-space” delocalized state. J Am Chem Soc. 2005;127:7435–43.

    Article  CAS  PubMed  Google Scholar 

  10. Bazan GC. Novel organic materials through control of multichromophore interactions. J Org Chem. 2007;72:8615–35.

    Article  CAS  PubMed  Google Scholar 

  11. Cram DJ, Allinger NL. Macro Rings. XII stereochemical consequences of steric compression in the smallest paracyclophane. J Am Chem Soc. 1955;77:6289–94.

    Article  CAS  Google Scholar 

  12. Rozenberg V, Sergeeva E, Hopf H. Cyclophanes as templates in stereoselective synthesis. In Gleiter R, Hopf H, editors. Modern Cyclophane Chemistry. Wiley-VCH: Weinheim; 2004, p. 435–62.

  13. Rowlands GJ. The synthesis of enantiomerically pure [2.2]paracyclophane derivatives. Org Biomol Chem. 2008;6:1527–34.

    Article  CAS  PubMed  Google Scholar 

  14. Gibson SE, Knight JD. [2.2]Paracyclophane derivatives in asymmetric catalysis. Org Biomol Chem. 2003;1:1256–69.

    Article  CAS  PubMed  Google Scholar 

  15. Aly AA, Brown AB. Asymmetric and fused heterocycles based on [2.2]Paracyclophane. Tetrahedron. 2009;65:8055–89.

    Article  CAS  Google Scholar 

  16. Paradies J. [2.2]Paracyclophane derivatives: synthesis and application in catalysis. Synthesis. 2011;3749–66.

  17. Delcourt M-L, Felder S, Turcaud S, Pollok CH, Merten C, Micouin L, et al. Highly enantioselective asymmetric transfer hydrogenation: a practical and scalable method to efficiently access planar chiral [2.2]paracyclophanes. J Org Chem. 2019;84:5369–82.

    Article  CAS  PubMed  Google Scholar 

  18. Vorontsova NV, Rozenberg VI, Sergeeva EV, Vorontsov EV, Starikova ZA, Lyssenko KA, et al. Symmetrically tetrasubstituted [2.2]Paracyclophanes: their systematization and regioselective synthesis of several types of bis-bifunctional derivatives by double electrophilic substitution. Chem Eur J. 2008;14:4600–17.

    Article  CAS  PubMed  Google Scholar 

  19. David ORP. Syntheses and applications of disubstituted [2.2]Paracyclophanes. Tetrahedron. 2012;68:8977–93.

    Article  CAS  Google Scholar 

  20. Hassan Z, Spluling E, Knoll DM, Lahann J, Bräse S. Planar Chiral [2.2]Paracyclophanes: from synthetic curiosity to applications in asymmetric synthesis and materials. Chem Soc Rev. 2018;47:6947–63.

    Article  CAS  PubMed  Google Scholar 

  21. Hassan Z, Spuling E, Knoll DM, Bräse S. Regioselective functionalization of [2.2]Paracyclophanes: recent synthetic progress and perspectives. Angew Chem Int Ed. 2020;59:2156–70.

    Article  CAS  Google Scholar 

  22. Felder S, Wu S, Brom J, Micouin L, Benedetti E. Enantiopure Planar Chiral [2.2]Paracyclophanes: synthesis and applications in asymmetric organocatalysis. Chirality. 2021;33:506–27.

    Article  CAS  PubMed  Google Scholar 

  23. Morisaki Y. Circularly Polarized Luminescence from Planar Chiral Compounds Based on [2.2]Paracyclophane. In: Mori T, editor. Circularly Polarized Luminescence of Isolated Small Organic Molecules. Springer: Singapore; 2020, p. 31–52.

  24. Morisaki, Y. Circularly Polarized Luminescence (CPL) Based on Planar Chiral [2.2]Paracyclophane. In: Ooyama Y, Yagi S, editors. Progress in the Science of Functional Dyes. Springer: Singapore; 2021, p. 343–74.

  25. Morisaki Y, Chujo Y. Planar Chiral [2.2]Paracyclophanes: optical resolution and transformation to optically active π-stacked molecules. Bull Chem Soc Jpn. 2019;92:265–74.

    Article  CAS  Google Scholar 

  26. Maeda H, Kameda M, Hatakeyama T, Morisaki Y. π-Stacked polymer consisting of a Pseudo-meta-[2.2]Paracyclophane skeleton. Polymers. 2018;10:1140.

    Article  PubMed Central  Google Scholar 

  27. Gon M, Sawada R, Morisaki Y, Chujo Y. Enhancement and controlling the signal of circularly polarized luminescence based on a Planar Chiral Tetrasubstituted [2.2]Paracyclophane Framework in Aggregation System. Macromolecules. 2017;50:1790–802.

    Article  CAS  Google Scholar 

  28. Gon M, Morisaki Y, Sawada R, Chujo Y. Synthesis of optically active X-shaped conjugated compounds and dendrimers based on Planar Chiral [2.2]Paracyclophane, leading to highly emissive circularly Polarized Luminescence. Chem Eur J. 2016;22:2291–8.

    Article  CAS  PubMed  Google Scholar 

  29. Morisaki Y, Inoshita K, Shibata S, Chujo Y. Synthesis of optically active through-space conjugated polymers consisting of Planar Chiral [2.2]Paracyclophane and Quaterthiophene. Polym J. 2015;47:278–81.

    Article  CAS  Google Scholar 

  30. Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Through-space conjugated polymers consisting of Planar Chiral Pseudo-ortho-linked [2.2]Paracyclophane. Polym Chem. 2012;3:2727–30.

    Article  CAS  Google Scholar 

  31. Liao C, Zhang Y, Ye S-H, Zheng W-H. Planar Chiral [2.2]Paracyclophane-based thermally activated delayed fluorescent materials for circularly polarized electroluminescence. ACS Appl Mater Int. 2021;13:25186–92.

    Article  CAS  Google Scholar 

  32. Zhang M-Y, Li Z-Y, Lu B, Wang Y, Ma Y-D, Zhao C-H. Solid-state emissive triarylborane-based [2.2]Paracyclophanes displaying circularly polarized luminescence and thermally activated delayed fluorescence. Org Lett. 2018;20:6868–71.

    Article  CAS  PubMed  Google Scholar 

  33. Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Practical optical resolution of Planar Chiral Pseudo-ortho-disubstituted [2.2]Paracyclophane. Chem Lett. 2012;41:990–2.

    Article  CAS  Google Scholar 

  34. Tsuchiya M, Maeda H, Inoue R, Morisaki Y. Construction of Helical Structures with Planar Chiral [2.2]Paracyclophane: fusing helical and planar chiralities. Chem Commun. 2021;57:9256–9.

    Article  CAS  Google Scholar 

  35. Kikuchi K, Nakamura J, Nagata Y, Tsuchida H, Kakuta T, Ogoshi T, et al. Control of circularly polarized luminescence by orientation of stacked π-Electron Systems. Chem Asian J. 2019;14:1681–5.

    Article  CAS  PubMed  Google Scholar 

  36. Morisaki Y, Sawada R, Gon M, Chujo Y. New Type of Planar Chiral [2.2]Paracyclophanes and construction of one-handed double Helices. Chem Asian J. 2016;11:2524–7.

    Article  CAS  PubMed  Google Scholar 

  37. Sawada R, Gon M, Nakamura J, Morisaki Y, Chujo Y. Synthesis of Enantiopure Planar Chiral Bis-(para)-Pseudo-meta-Type [2.2]Paracyclophanes. Chirality. 2018;30:1109–14.

    Article  CAS  PubMed  Google Scholar 

  38. Morisaki Y, Gon M, Sasamori T, Tokitoh N, Chujo Y. Planar Chiral Tetrasubstituted [2.2]Paracyclophane: optical resolution and functionalization. J Am Chem Soc. 2014;136:3350–3.

    Article  CAS  PubMed  Google Scholar 

  39. Sonogashira K, Tohda Y, Hagihara N. A convenient synthesis of acetylenes: catalytic substitutions of acetylenic hydrogen with bromoalkenes, iodoarenes and bromopyridines. Tetrahedron Lett. 1975;16:4467–70.

    Article  Google Scholar 

  40. Sonogashira K. Palladium-Catalyzed Alkynylation: Sonogashira Alkyne Synthesis. In: Negishi E, editor. Handbook of Organopalladium Chemistry for Organic Synthesis. Wiley-Interscience: New York; 2002, p. 493–529.

  41. Meyer-Epler G, Sure R, Schneider A, Schnakenburg G, Grimme S, Lützen A. Synthesis, Chiral Resolution, and absolute configuration of dissymmetric 4,15-Difunctionalized [2.2]Paracyclophanes. J Org Chem. 2014;79:6679–87.

    Article  Google Scholar 

  42. Miki N, Maeda H, Inoue R, Morisaki Y. Syntheses and Chiroptical properties of optically active V-shaped molecules based on Planar Chiral [2.2]Paracyclophane. ChemistrySelect. 2021;6:12970–4.

    Article  CAS  Google Scholar 

  43. Bondarenko L, Dix I, Hinrichs H, Hopf H. Cyclophanes. Part LII: Ethynyl[2.2]paracyclophanes - New Building Blocks for Molecular Scaffolding. Synthesis. 2004;2751–9.

  44. Tanaka Y, Ozawa T, Inagaki A, Akita M. Redox-active Polyiron Complexes with Tetra(ethynylphenyl)ethene and [2,2]Paracyclophane spacers containing ethynylphenyl units: extension to higher dimensional molecular wire. Dalton Trans. 2007;928–33.

  45. Morisaki Y, Ueno S, Saeki A, Asano A, Seki S, Chujo Y. π-Electron-system-layered Polymer: through-space conjugation and properties as a single molecular wire. Chem Eur J. 2012;18:4216–24.

    Article  CAS  PubMed  Google Scholar 

  46. Morisaki Y, Inoshita K, Chujo Y. Planar Chiral through-space conjugated oligomers: synthesis and characterization of Chiroptical Properties. Chem Eur J. 2014;20:8386–90.

    Article  CAS  PubMed  Google Scholar 

  47. Saeki A. Evaluation-oriented exploration of photo energy conversion systems: from fundamental optoelectronics and material screening to the combination with Data Science. Polym J. 2020;52:1307–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miki N, Inoue R, Morisaki Y. Synthesis of optically active V-shaped molecules: studies on the orientation of the Stacked π-Electron Systems and Their Chiroptical Properties. Bull Chem Soc Jpn. 2021;94:451–3.

    Article  CAS  Google Scholar 

  49. Tabata D, Inoue R, Sasai Y, Morisaki Y. Synthesis of optically active V(120°)- and (60°)-shaped molecules comprising different π-electron systems. Bull Chem Soc Jpn. 2022;95:595–601.

    Article  CAS  Google Scholar 

  50. Asakawa R, Tabata D, Miki N, Tsuchiya M, Inoue R, Morisaki Y. Syntheses of optically active V-shaped molecules: relationship between their Chiroptical Properties and the Orientation of the Stacked π-Electron System. Eur J Org Chem. 2021;2021:5725–31.

  51. Berova N, Nakanishi K, Woody RW. Circular Dichroism 2nd ed. Wiley-VCH: Toronto; 2000.

  52. Riehl JP, Richardson FS. Circularly polarized luminescence spectroscopy. Chem Rev. 1986;86:1–16.

    Article  CAS  Google Scholar 

  53. Riehl JP, Muller F. Comprehensive Chiroptical Spectroscopy. Wiley and Sons: New York; 2012.

Download references


The authors are grateful to Professor Kazuo Tanaka and Dr. Masayuki Gon (Graduate School of Engineering, Kyoto University) for CD and CPL spectroscopy. The financial support by Grant-in-Aid for Scientific Research (B) (No. 19H02792) from the Japan Society for the Promotion of Science is acknowledged (YM). This work was also partly supported by the Nippon Sheet Glass Foundation for Materials Science and Engineering (YM).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yasuhiro Morisaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maeda, H., Inoue, R., Saeki, A. et al. Synthesis of optically active through-space conjugated polymers consisting of planar chiral pseudo-meta-disubstituted [2.2]paracyclophane. Polym J (2022).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


Quick links