Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

From controlled radical polymerization of vinyl ether to polymerization-induced self-assembly

Abstract

Vinyl ether (VE) was long believed to be among the monomers that could not be radically homopolymerized. Therefore, to synthesize block copolymers with versatile radically polymerizable monomers, efficient transformation reactions were necessary between living cationic and controlled radical polymerizations. Under such circumstances, some groundbreaking polymerizations have been discovered. One reaction, a metal-free RAFT cationic polymerization, enabled the in situ introduction of the thiocarbonylthio moiety into poly(VE)s. This technique produced block copolymers using both cationic and radical RAFT processes. Advances in research have made it possible to perform radical homopolymerization with hydroxy-functional VE. This achievement was attributed to the hydrogen bonding between the VE oxygen and the hydroxy group that reduced the reactivity of the growing radical. Consequently, RAFT radical polymerization of VE was achieved due to hydrogen bonds and/or cation-π interactions between VE monomers and the propagating radical. Thus, vinyl ether became a radically polymerizable monomer. By using the resulting poly(VE) as a thermoresponsive polymer and as a reactive emulsifier for polymerization-induced self-assembly, various functional polymers and nano-objects can be obtained. This review focuses on the controlled radical polymerization of VEs and the related self-assemblies.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Odian G. Principles of polymerization. 4th ed. New Jersey: Wiley; 2004.

  2. Plastics Europe, Plastics—the Facts 2021. https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021. Accessed 11 May 2022.

  3. Coca S, Matyjaszewski K. Block copolymers by transformation of “living” carbocationic into “living” radical polymerization. Macromolecules. 1997;30:2808–10.

  4. Bernaerts KV, Du Prez FE. Design of novel poly(methyl vinyl ether) containing AB and ABC block copolymers by the dual initiator strategy. Polymer. 2005;46:8469–82.

    Article  CAS  Google Scholar 

  5. Lu J, Liang H, Li A, Cheng Q. Synthesis of block and graft copolymers of β-pinene and styrene by transformation of living cationic polymerization to atom transfer radical polymerization. Eur Polym J. 2004;40:397–402.

    Article  CAS  Google Scholar 

  6. Yamada K, Miyazaki M, Ohno K, Fukuda T, Minoda M. Atom transfer radical polymerization of poly(vinyl ether) macromonomers. Macromolecules. 1999;32:290–3.

    Article  CAS  Google Scholar 

  7. Yagci Y, Tasdelen MA. Mechanistic transformations involving living and controlled/living polymerization methods. Prog Polym Sci. 2006;31:1133–70.

    Article  CAS  Google Scholar 

  8. Yilmaz G, Yagci Y. Mechanistic transformations involving radical and cationic polymerizations. Chin J Polym Sci. 2020;38:205–12.

    Article  CAS  Google Scholar 

  9. Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem Rev. 2001;101:2921–90.

    Article  CAS  PubMed  Google Scholar 

  10. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization. Chem Rev. 2001;101:3689–746.

    Article  CAS  PubMed  Google Scholar 

  11. Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B. Nitroxide-mediated polymerization. Prog Polym Sci. 2013;38:63–235.

    Article  CAS  Google Scholar 

  12. Tatemoto M. Development of “iodine transfer polymerization” and its applications to telechelically reactive polymers. Kobunshi Ronbunshu. 1992;49:765–783.

    Article  CAS  Google Scholar 

  13. Yamago S. Precision polymer synthesis by degenerative transfer controlled/living radical polymerization using organotellurium, organostibine, and organobismuthine chain-transfer agents. Chem Rev. 2009;109:5051–68.

    Article  CAS  PubMed  Google Scholar 

  14. Wayland BB, Poszmik G, Mukerjee SL, Fryd M. Living radical polymerization of acrylates by organocobalt porphyrin complexes. J Am Chem Soc. 1997;30:7943–4.

    Google Scholar 

  15. Chiefari J, Chong YK, Ercole F, Krstina J, Jeffery J, Le TPT, et al. Living free-radical polymerization by reversible addition−fragmentation chain transfer: the RAFT process. Macromolecules. 1998;31:5559–62.

    Article  CAS  Google Scholar 

  16. Moad G. RAFT polymerization to form stimuli-responsive polymers. Polym Chem. 2017;8:177–219.

    Article  CAS  Google Scholar 

  17. Goto A, Zushi H, Hirai N, Wakada T, Tsujii Y, Fukuda T. Living radical polymerizations with germanium, tin, and phosphorus catalysts−reversible chain transfer catalyzed polymerizations (RTCPs). J Am Chem Soc. 2007;129:13347–54.

    Article  CAS  PubMed  Google Scholar 

  18. McKenzie TG, Fu Q, Uchiyama M, Satoh K, Xu J, Boyer C, et al. Beyond traditional RAFT: Alternative activation of thiocarbonylthio compounds for controlled polymerization. Adv Sci. 2016;3:1500394.

    Article  Google Scholar 

  19. Nothling MD, Fu Q, Reyhani A, Allison-Logan S, Jung K, Zhu J, et al. Progress and perspectives beyond traditional RAFT polymerization. Adv Sci. 2020;7:2001656.

    Article  CAS  Google Scholar 

  20. Otsu T, Yoshida M. Role of initiator-transfer agent-terminator (iniferter) in radical polymerizations: polymer design by organic disulfides as iniferters. Makromol Chem Rapid Commun. 1982;3:127–32.

    Article  CAS  Google Scholar 

  21. Hartlieb M. Photo-iniferter RAFT polymerization. Macromol Rapid Commun. 2022;43:2100514.

    Article  CAS  Google Scholar 

  22. Blackman LD, Doncom KEB, Gibson MI, O’Reilly RK. Comparison of photo- and thermally initiated polymerization-induced self-assembly: a lack of end group fidelity drives the formation of higher order morphologies. Polym Chem. 2017;8:2860–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sugihara S, Yamashita K, Matsuzuka K, Ikeda I, Maeda Y. Transformation of living cationic polymerization of vinyl ethers to RAFT polymerization mediated by a carboxylic RAFT agent. Macromolecules. 2012;42:794–804.

    Article  Google Scholar 

  24. Sugihara S, Iwata K, Miura S, Ma’Radzi AH, Maeda Y. Synthesis of dual thermoresponsive ABA triblock copolymers by both living cationic vinyl polymerization and RAFT polymerization using a dicarboxylic RAFT agent. Polymer. 2013;54:1043–52.

    Article  CAS  Google Scholar 

  25. Kamigaito M, Yamaoka K, Sawamoto M, Higashimura T. Living cationic polymerization of isobutyl vinyl ether by benzoic acid derivatives/zinc chloride initiating systems: slow interconversion between dormant and activated growing species. Macromolecules. 1992;25:6400–6.

  26. Hashimoto T, Iwata T, Minami A, Kodaira T. Living cationic polymerization of vinyl ethers with carboxylic acid/tin tetrahalide initiating systems. I. New initiating systems based on acetic acid and selection of Lewis acid and basic additive leading to living polymers with low polydispersity. J Polym Sci A Polym Chem. 1998;36:3173–85.

    Article  CAS  Google Scholar 

  27. Sugihara S, Kanaoka S, Aoshima S. Double thermosensitive diblock copolymers of vinyl ethers with pendant oxyethylene groups: unique physical gelation. Macromolecules. 2005;38:1919–27.

    Article  CAS  Google Scholar 

  28. Schild HG. Poly(N-isopropylacrylamide): experiment, theory and application. Prog Polym Sci. 1992;17:163–249.

    Article  CAS  Google Scholar 

  29. Ma’Radzi AH, Sugihara S, Miura S, Konegawa N, Maeda Y. Synthesis of thermoresponsive block and graft copolymers via the combination of living cationic polymerization and RAFT polymerization using a vinyl ether-type RAFT agent. Polymer. 2014;55:1920–30.

    Article  Google Scholar 

  30. Ma’Radzi AH, Sugihara Toida T, Maeda Y. Synthesis of polyvinyl alcohol stereoblock copolymer via the combination of living cationic polymerization and RAFT/MADIX polymerization using xanthate with vinyl ether moiety. Polymer. 2014;55:5332–45.

    Article  Google Scholar 

  31. Uchiyama M, Satoh K, Kamigaito M. Stereospecific cationic RAFT polymerization of bulky vinyl ethers and stereoblock poly(vinyl alcohol) via mechanistic transformation to radical RAFT polymerization of vinyl acetate. Giant. 2021;5:100047.

    Article  CAS  Google Scholar 

  32. Sugihara S, Konegawa N, Maeda Y. HCl·Et2O-catalyzed metal-free RAFT cationic polymerization: one-pot transformation from metal-free living cationic polymerization to RAFT radical polymerization. Macromolecules. 2015;48:5120–31.

    Article  CAS  Google Scholar 

  33. Sugihara S, Okubo S, Maeda Y. Metal-free RAFT cationic polymerization of p-methoxystyrene with HCl·Et2O using a xanthate-type RAFT cationogen. Polym Chem. 2016;7:6854–63.

    Article  CAS  Google Scholar 

  34. Sugihara S, Sakamoto Y, Nakayama M, Michishita K, Maeda Y. Transformation from xanthate-type cationogen mediated metal-free RAFT cationic polymerization with “HCl·Et2O” into RAFT radical polymerization to form poly(alkyl vinyl ether)-b-polyvinyl alcohol amphiphiles. Polymer. 2018;154:153–63.

    Article  CAS  Google Scholar 

  35. Uchiyama M, Satoh K, Kamigaito M. Cationic RAFT polymerization using ppm concentrations of organic acid. Angew Chem Int Ed. 2015;54:1924–8.

    Article  CAS  Google Scholar 

  36. Uchiyama M, Satoh K, Kamigaito M. Cationic RAFT and DT polymerization. Prog Polym Sci. 2022;124:101485.

    Article  CAS  Google Scholar 

  37. Cho CG, Feit BA, Webster OW. Cationic polymerization of isobutyl vinyl ether: livingness enhancement by dialkyl sulfides. Macromolecules. 1990;23:1918–23.

    Article  CAS  Google Scholar 

  38. Zhao B, Li J, Pan X, Zhang Z, Jin G, Zhu J. Photoinduced free radical promoted cationic RAFT polymerization toward “living” 3D printing. ACS Macro Lett. 2021;10:1315–20.

    Article  CAS  PubMed  Google Scholar 

  39. Olson KG, Butler GB. Stereochemical evidence for the participation of a comonomer charge-transfer complex in alternating copolymerizations. Macromolecules. 1983;16:707–10.

    Article  CAS  Google Scholar 

  40. Kamachi M, Tanaka K, Kuwae Y. ESR studies on radical polymerization of vinyl ethers. J Polym Sci A Polym Chem. 1986;24:925–9.

    Article  CAS  Google Scholar 

  41. Fueno T, Kamachi M. Ab initio SCF study of the addition of the methyl radical to vinyl compounds. Macromolecules. 1988;21:908–12.

    Article  CAS  Google Scholar 

  42. Kumagai T, Kagawa C, Aota H, Takeda Y, Kawasaki H, Arakawa R, et al. Specific polymerization mechanism involving β-scission of mid-chain radical yielding oligomers in the free-radical polymerization of vinyl ethers. Macromolecules. 2008;41:7347–51.

    Article  CAS  Google Scholar 

  43. Sugihara S, Kawamoto Y, Maeda Y. Direct radical polymerization of vinyl ethers: reversible addition–fragmentation chain transfer polymerization of hydroxy-functional vinyl ethers. Macromolecules. 2016;49:1563–74.

    Article  CAS  Google Scholar 

  44. Sugihara S, Masukawa T. Method for producing homopolymer or random copolymer of hydroxyl group-containing vinyl ether. PCT Int Appl. WO2013121910 A1. 22 Aug 2013.

  45. Sugihara S, Yoshida A, Fujita S, Maeda Y. Design of hydroxy-functionalized thermoresponsive copolymers: improved direct radical polymerization of hydroxy-functional vinyl ethers. Macromolecules. 2017;50:8346–56.

    Article  CAS  Google Scholar 

  46. Lacík I, Chovancová A, Uhelská L, Preusser C, Hutchinson RA, Buback M. PLP-SEC studies into the propagation rate coefficient of acrylamide radical polymerization in aqueous solution. Macromolecules. 2016;49:3244–53.

    Article  Google Scholar 

  47. Lacík I, Beuermann S, Buback M. PLP-SEC study into free-radical propagation rate of nonionized acrylic acid in aqueous solution. Macromolecules. 2003;36:9355–63.

    Article  Google Scholar 

  48. De Sterck B, Vaneerdeweg R, Du Prez F, Waroquier M, Van Speybroeck V. Solvent effects on free radical polymerization reactions: The influence of water on the propagation rate of acrylamide and methacrylamide. Macromolecules. 2010;43:827–36.

    Article  Google Scholar 

  49. Sugihara S, Yoshida A, Kono T, Takayama T, Maeda Y. Controlled radical homopolymerization of representative cationically polymerizable vinyl ethers. J Am Chem Soc. 2019;141:13954–61.

    Article  CAS  PubMed  Google Scholar 

  50. Merna J, Vlček P, Volkis V, Michl J. Li+ catalysis and other new methodologies for the radical polymerization of less activated olefins. Chem Rev. 2016;116:771–785.

    Article  CAS  PubMed  Google Scholar 

  51. Duan J, Gong YI, Chen D, Ma Y, Song C, Yang W. Radical homopolymerization of vinyl ethers activated by Li+−π complexation in the presence of CH3OLi and LiI. Polym Chem. 2022;13:1098–106.

    Article  CAS  Google Scholar 

  52. Moad G. A Critical survey of dithiocarbamate reversible addition-fragmentation chain transfer (RAFT) agents in radical polymerization. J Polym Sci A Polym Chem. 2019;57:216–27.

    Article  CAS  Google Scholar 

  53. Nakabayashi K, Mori H. Recent progress in controlled radical polymerization of N-vinyl monomers. Eur Polym J. 2013;49:2808–38.

    Article  CAS  Google Scholar 

  54. Coote ML, Henry DJ. Effect of substituents on radical stability in reversible addition fragmentation chain transfer polymerization: an ab initio study. Macromolecules. 2005;38:1415–33.

    Article  CAS  Google Scholar 

  55. Sugihara S, Kanaoka S, Aoshima S. Thermosensitive random copolymers of hydrophilic and hydrophobic monomers obtained by living cationic copolymerization. Macromolecules. 2004;37:1711–19.

    Article  CAS  Google Scholar 

  56. Sugihara S, Hashimoto K, Matsumoto Y, Kanaoka S, Aoshima S. Thermosensitive polyalcohols: synthesis via living cationic polymerization of vinyl ethers with a silyloxy group. J Polym Sci A Polym Chem. 2003;41:3300–12.

    Article  CAS  Google Scholar 

  57. Antonietti M, Förster S. Vesicles and liposomes: a self-assembly principle beyond lipids. Adv Mater. 2003;15:1323–33.

    Article  CAS  Google Scholar 

  58. Sugihara S, Blanazs A, Armes SP, Anthony JR, Lewis AL. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution. J Am Chem Soc. 2011;133:15707–13.

    Article  CAS  PubMed  Google Scholar 

  59. Sugihara S, Ma’Radzi AH, Ida S, Irie S, Kikukawa T, Maeda Y. In situ nano-objects via RAFT aqueous dispersion polymerization of 2-methoxyethyl acrylate using poly(ethylene oxide) macromolecular chain transfer agent as steric stabilizer. Polymer. 2015;76:17–24.

    Article  CAS  Google Scholar 

  60. Sugihara S, Armes SP, Blanazs A, Lewis AL. Non-spherical morphologies from cross-linked biomimetic diblock copolymers using RAFT aqueous dispersion polymerization. Soft Matter. 2011;7:10787–93.

    Article  CAS  Google Scholar 

  61. Kaasgaard T, Drummond CJ. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys Chem Chem Phys. 2006;8:4957–75.

    Article  CAS  PubMed  Google Scholar 

  62. Fielding LA, Derry MJ, Ladmiral V, Rosselgong J, Rodrigues AM, Ratcliffe LPD, et al. RAFT dispersion polymerization in non-polar solvents: facile production of block copolymer spheres, worms and vesicles in n-alkanes. Chem Sci. 2013;4:2081–7.

    Article  CAS  Google Scholar 

  63. Sugihara S. Polymerization-induced self-assembly of block copolymer nano-objects via green RAFT polymerization. In: Yamamoto H, Kato T, editors. Molecular technology, Vol. 4: synthesis innovation, Ch. 1. Wiley-VCH; 2019. p. 1−29.

  64. Derry MJ, Fielding LA, Armes SP. Polymerization-induced self-assembly of block copolymer nanoparticles via RAFT non-aqueous dispersion polymerization. Prog Polym Sci. 2016;52:1–18.

    Article  CAS  Google Scholar 

  65. Canning SL, Smith GN, Armes SP. A critical appraisal of RAFT-mediated polymerization-induced self-assembly. Macromolecules. 2016;49:1985–2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lowe AB. RAFT alcoholic dispersion polymerization with polymerization-induced self-assembly. Polymer. 2016;106:161–81.

    Article  CAS  Google Scholar 

  67. D’Agosto F, Rieger J, Lansalot M. RAFT-mediated polymerization-induced self-assembly. Angew Chem Int Ed. 2020;59:8368–92.

    Article  Google Scholar 

  68. Wang X, An Z. New insights into RAFT dispersion polymerization-induced self-assembly: from monomer library, morphological control, and stability to driving forces. Macromol Rapid Commun. 2019;40:1800325.

    Article  Google Scholar 

  69. Sugihara S, Sudo M, Maeda Y. Synthesis and nano-object assembly of biomimetic block copolymers for catalytic silver nanoparticles. Langmuir. 2019;35:1346–56.

    Article  CAS  PubMed  Google Scholar 

  70. Sugihara S, Sudo M, Hirogaki K, Irie S, Maeda Y. Synthesis of various poly(2-hydroxyethyl vinyl ether)-stabilized latex particles via surfactant-free emulsion polymerization in water. Macromolecules. 2018;51:1260–71.

    Article  CAS  Google Scholar 

  71. Sugihara S, Kawakami R, Irie S, Maeda Y. Poly[di(ethylene glycol) vinyl ether]-stabilized poly(vinyl acetate) nanoparticles with various morphologies via RAFT aqueous emulsion polymerization of vinyl acetate. Polym J. 2021;53:309–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinji Sugihara.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sugihara, S. From controlled radical polymerization of vinyl ether to polymerization-induced self-assembly. Polym J 54, 1407–1418 (2022). https://doi.org/10.1038/s41428-022-00698-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00698-w

Search

Quick links