Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dimensionally thermally stable biomass-based polyimides for flexible electronic applications

Abstract

Biomass-based polymers featuring high thermal stability and low water absorption play a vital role in contributing to the environmental sustainability of flexible electronics. In this research, we developed a series of polyimides derived from (3 R,6 S)-hexahydrofuro[3,2-b]furan-3,6-diyl bis(1,3-dioxo-1,3-dihydroisobenzofuran-5-carboxylate) (ISBESA), which can be synthesized from isosorbide bioresources. This study systematically analyzed the effect of ester or amide linkage presence and orientation on the performance of polyimides (PIs). The PI chain configuration and morphology were investigated via experimental results such as d-spacing or film density and theoretical calculations. After introducing the stiff ester linkage, PI-1 with a high chain coplanarity and stacking state exhibits a low water absorption of 0.34 and possesses outstanding thermal/mechanical stability, with a Tg higher than 300 °C, a CTE of 27.8 ppm K–1, and a Young’s modulus of 4.4 GPa, which is superior to those of most reported biopolymers and even Kapton® engineering plastics. In addition, PI-1 exhibits low dielectric properties, with a Dk of 2.84 and a Df of 0.004, due to the low chain polarity and dipole moment. We further demonstrate a flexible transistor based on PI-1 that shows electrical performance comparable to those of traditional silicon-based devices, even after thermal treatment at 150 °C or 1000 bending cycles.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Shi J, Liu S, Zhang L, Yang B, Shu L, Yang Y. et al. Smart textile‐integrated microelectronic systems for wearable applications. Adv Mater. 2020;32:1901958.

    Article  CAS  Google Scholar 

  2. Wang Y, Huang X, Li T, Li L, Guo X, Jiang P. Polymer-based gate dielectrics for organic field-effect transistors. Chem Mater. 2019;31:2212–40.

    Article  CAS  Google Scholar 

  3. Zou J, Wang H, Zhang X, Wang X, Shi Z, Jiang Y, et al. Polyimide-based gate dielectrics for high-performance organic thin film transistors. J Mater Chem C 2019;7:7454–9.

    Article  CAS  Google Scholar 

  4. Chen C-K, Lin Y-C, Miyane S, Ando S, Ueda M, Chen W-C. Thermally and mechanically stable polyimides as flexible substrates for organic field-effect transistors. ACS Appl Polym Mater. 2020;2:3422–32.

    Article  CAS  Google Scholar 

  5. Wu Z, Shi P, Xing R, Yu T, Zhao L, Wei L, et al. Flexible Mott synaptic transistor on polyimide substrate for physical neural networks. Adv. Electron. Mater. 2022; p. 2200078. https://doi.org/10.1002/aelm.202200078.

  6. Bandyopadhyay M, Chattopadhyay S, Roy G, Mandal N, Bera SC. Low-cost system of direct measurement of dissipation factor for high-voltage electrical machine. IEEE Trans Instrum Meas. 2019;69:1547–55.

    Article  Google Scholar 

  7. Wang J, Niu Y, Shao S, Wang H, Xu J, Pham V. et al. A comprehensive solution for modeling moisture induced delamination in electronic packaging during solder reflow. Microelectron Reliab. 2020;112:113791.

    Article  CAS  Google Scholar 

  8. Awasthi AK, Li J, Koh L, Ogunseitan OA. Circular economy and electronic waste. Nat Electron. 2019;2:86–89.

    Article  Google Scholar 

  9. Damayanti D, Supriyadi D, Amelia D, Saputri DR, Devi YLL, Auriyani WA. et al. Conversion of Lignocellulose for bioethanol production, applied in bio-polyethylene terephthalate. Polymers. 2021;13:2886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamps JH, Ramakrishnan V, Hoeks T, Jansen BJ, Sijbesma RP, Heuts JP. Microphase separation: enabling isosorbide-based polycarbonates with improved property profile. Macromolecules. 2019;52:3187–98.

    Article  CAS  Google Scholar 

  11. Liu X, Yang X, Wang S, Wang S, Wang Z, Liu S, et al. Fully bio-based polyhydroxyurethanes with a dynamic network from a terpene derivative and cyclic carbonate functional soybean oil. ACS Sustain Chem Eng. 2021;9:4175–84.

    Article  CAS  Google Scholar 

  12. Yang G, Zhang R, Huang H, Liu L, Wang L, Chen Y. Synthesis of novel biobased polyimides derived from isomannide with good optical transparency, solubility and thermal stability. RSC Adv. 2015;5:67574–82.

    Article  CAS  Google Scholar 

  13. Kuhire SS, Ichake AB, Grau E, Cramail H, Wadgaonkar PP. Synthesis and characterization of partially bio-based polyimides based on biphenylene-containing diisocyanate derived from vanillic acid. Eur Polym J 2018;109:257–64.

    Article  CAS  Google Scholar 

  14. Chen M, Liang B, Guo Y, Li C, He X, Hu J. et al. Pyrolysis mechanism of polyimide containing bio-molecule adenine building block. Polym Degrad Stab. 2020;175:109124.

    Article  CAS  Google Scholar 

  15. Ji D, Li T, Hu W, Fuchs H. Recent progress in aromatic polyimide dielectrics for organic electronic devices and circuits. Adv Mater. 2019;31:1806070.

    Article  Google Scholar 

  16. Zhou Z, Zhang H, Liu J, Huang W. Flexible electronics from intrinsically soft materials. Giant. 2021;6:100051.

    Article  Google Scholar 

  17. Chen H, Dai F, Wang M, Chen C, Qian G, Yu Y. Polyimides containing a novel bisbenzoxazole with high T g and low CTE. RSC Adv. 2021;11:16924–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jiao L, Zhang Y, Du Z, Dai X, Wang H, Dong Z, et al. Ultra‐high T g and ultra‐low coefficient of thermal expansion polyimide films based on hydrogen bond interaction. J. Polym. Sci. 1. https://doi.org/10.1002/pol.20220177.

  19. Ma K, Chen G, Wang W, Zhang A, Zhong Y, Zhang Y, et al. Partially bio‐based aromatic polyimides derived from 2, 5‐furandicarboxylic acid with high thermal and mechanical properties. J Polym Sci A Polym Chem. 2018;56:1058–66.

    Article  CAS  Google Scholar 

  20. Chen C-K, Lin Y-C, Hsu L-C, Ho J-C, Ueda M, Chen W-C. High performance biomass-based polyimides for flexible electronic applications. ACS Sustain Chem Eng. 2021;9:3278–88.

    Article  CAS  Google Scholar 

  21. Hasegawa M, Koseki K. Poly (ester imide) s possessing low coef-cient of thermal expansion and low water absorption. High Perform Polym. 2006;18:697–717.

    Article  CAS  Google Scholar 

  22. Hasegawa M, Sakamoto Y, Tanaka Y, Kobayashi Y. Poly (ester imide) s possessing low coefficients of thermal expansion (CTE) and low water absorption (III). Use of bis (4-aminophenyl) terephthalate and effect of substituents. Eur Polym J. 2010;46:1510–24.

    Article  CAS  Google Scholar 

  23. Lian M, Lu X, Lu Q. Synthesis of superheat-resistant polyimides with high T g and low coefficient of thermal expansion by introduction of strong intermolecular interaction. Macromolecules. 2018;51:10127–35.

    Article  CAS  Google Scholar 

  24. Zhang W, Peng Z, Zhang X, Pan Q, Liu S, Cao B, et al. Soluble liquid crystalline poly (ester imide) s with high glass transition temperatures and improved dielectric properties. ACS Appl. Polym. Mater. 2022. https://doi.org/10.1021/acsapm.2c00211.

  25. Wu Z, He J, Yang H, Yang S. Progress in aromatic polyimide films for electronic applications: preparation, structure and properties. Polymers. 2022;14:1269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lin Y-C, Chen F-H, Chiang Y-C, Chueh C-C, Chen W-C. Asymmetric side-chain engineering of isoindigo-based polymers for improved stretchability and applications in field-effect transistors. ACS Appl Mater Interfaces. 2019;11:34158–70.

    Article  CAS  PubMed  Google Scholar 

  27. Zhang S, Ling H, Chen Y, Cui Q, Ni J, Wang X. et al. Hydrogel‐enabled transfer‐printing of conducting polymer films for soft organic bioelectronics. Adv Funct Mater. 2020;30:1906016.

    Article  CAS  Google Scholar 

  28. Hasegawa M, Hishiki T. Poly (ester imide) s possessing low coefficients of thermal expansion and low water absorption (V). Effects of ester-linked diamines with different lengths and substituents. Polymers. 2020;12:859.

    Article  CAS  PubMed Central  Google Scholar 

  29. Janssen D, De Palma R, Verlaak S, Heremans P, Dehaen W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films. 2006;515:1433–8.

    Article  CAS  Google Scholar 

  30. García MG, Marchese J, Ochoa NA. Improved gas selectivity of polyetherimide membrane by the incorporation of PIM polyimide phase. J Appl Polym Sci. 2017;134:44682.

    Article  Google Scholar 

  31. Tian Y, Luo L, Yang Q, Zhang L, Wang M, Wu D. et al. Construction of stable hydrogen bonds at high temperature for preparation of polyimide films with ultralow coefficient of thermal expansion and high Tg. Polymer. 2020;188:122100.

    Article  CAS  Google Scholar 

  32. Yang Z, Guo H, Kang C, Gao L. Synthesis and characterization of amide-bridged colorless polyimide films with low CTE and high optical performance for flexible OLED displays. Polym Chem. 2021;12:5364–76.

    Article  CAS  Google Scholar 

  33. Li X, Ding C, Li X, Yang H, Liu S, Wang X. et al. Electronic biopolymers: from molecular engineering to functional devices. Chem Eng J. 2020;397:125499.

    Article  CAS  Google Scholar 

  34. Ishii J, Takata A, Oami Y, Yokota R, Vladimirov L, Hasegawa M. Spontaneous molecular orientation of polyimides induced by thermal imidization (6). Mechanism of negative in-plane CTE generation in non-stretched polyimide films. Eur Polym J. 2010;46:681–93.

    Article  CAS  Google Scholar 

  35. Hu J, Li R, Chen C, Lu Z, Zeng K, Yang G. New insights into mechanism of negative in-plane CTE based on bio-based adenine-containing polyimide film. Polymer. 2018;146:133–41.

    Article  CAS  Google Scholar 

  36. Hasegawa M, Matano T, Shindo Y, Sugimura T. Spontaneous molecular orientation of polyimides induced by thermal imidization. 2. -plane Orientat Macromolecules. 1996;29:7897–909.

    Article  CAS  Google Scholar 

  37. Okada T, Ishige R, Ando S. Effects of chain packing and structural isomerism on the anisotropic linear and volumetric thermal expansion behaviors of polyimide films. Polymer. 2018;146:386–95.

    Article  CAS  Google Scholar 

  38. Luo L, Zhang J, Huang J, Feng Y, Peng C, Wang X, et al. The dominant factor for mechanical property of polyimide films containing heterocyclic moieties: in‐plane orientation, crystallization, or hydrogen bonding. J Appl Polym Sci. 2016;133. https://doi.org/10.1002/app.44000.

  39. Zhu T, Yu Q, Zheng W, Bei R, Wang W, Wu M, et al. Intrinsic high-k–low-loss dielectric polyimides containing ortho-position aromatic nitrile moieties: reconsideration on Clausius–Mossotti equation. Polym Chem. 2021;12:2481–9.

    Article  CAS  Google Scholar 

  40. Miyane S, Chen C-K, Lin Y-C, Ueda M, Chen W-C. Thermally stable colorless copolyimides with a low dielectric constant and dissipation factor and their organic field-effect transistor applications. ACS Appl Polym Mater 2021;3:3153–63.

    Article  CAS  Google Scholar 

  41. Liu X-J, Zheng M-S, Chen G, Dang Z-M, Zha J-W. High-temperature polyimide dielectric materials for energy storage: theory, design, preparation and properties. Energy Environ Sci. 2021;15:56–81.

    Article  Google Scholar 

  42. Deng B, Zhang S, Liu C, Li W, Zhang X, Wei H, et al. Synthesis and properties of soluble aromatic polyimides from novel 4, 5-diazafluorene-containing dianhydride. Rsc Adv. 2018;8:194–205.

    Article  CAS  Google Scholar 

  43. Alves P, Pinto S, de Sousa HC, Gil MH. Surface modification of a thermoplastic polyurethane by low‐pressure plasma treatment to improve hydrophilicity. J Appl Polym Sci. 2011;122:2302–8.

    Article  CAS  Google Scholar 

  44. Min H, Kang B, Shin YS, Kim B, Lee SW, Cho JH. Transparent and colorless polyimides containing multiple trifluoromethyl groups as gate insulators for flexible organic transistors with superior electrical stability. ACS Appl Mater Interfaces. 2020;12:18739–47.

    Article  CAS  PubMed  Google Scholar 

  45. Lee J, Choi HH, Park N, Min H, Han S, Jeong H, et al. Branched segments in polymer gate dielectric as intrinsic charge trap sites in organic transistors. J Phys Chem C. 2015;119:7670–7.

    Article  CAS  Google Scholar 

Download references

Funding

The authors appreciate the financial support of the Advanced Research Center for Green Materials Science and Technology from the Featured Area Research Center Program within the framework of the Higher Education Sprout Project of the Ministry of Education (109L9006) and the Ministry of Science and Technology in Taiwan (MOST 109-2634-F-002-042).

Author information

Authors and Affiliations

Authors

Contributions

Y-TH conducted the experiment regarding synthesis and characterization of polyimide (PI), fabrication of silicon-based devices, and preparation of PI substrate. C-KC designed the research scope and conducted the experiment regarding PI morphology characterization, preparation of PI dielectric, and fabrication of flexible devices. Y-CL provided the isoindigo-based polymer for the active layer. C-KC, Y-YY, and W-CC revised the article and gave the suggestions to the research.

Corresponding authors

Correspondence to Chun-Kai Chen, Yang-Yen Yu or Wen-Chang Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hung, YT., Chen, CK., Lin, YC. et al. Dimensionally thermally stable biomass-based polyimides for flexible electronic applications. Polym J 54, 1489–1499 (2022). https://doi.org/10.1038/s41428-022-00696-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00696-y

Search

Quick links