Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Unnatural biopolymers of saccharides and proteins conjugated with poly(2-oxazoline) and methacrylate-based polymers: from polymer design to bioapplication

Abstract

In this focus review, recent developments in unnatural sugar- and protein-based polymers and their future bioapplications are discussed. A new unnatural oligoaminosaccharide carrying N-1,2-glycosidic bonds that cannot be prepared in natural biological systems has been proposed. To prepare the oligomers, a sugar monomer possessing a 2-methyl-2-oxazoline (MeOx) ring was polymerized via cationic ring-opening polymerization. This polymerization did not proceed by the classical MeOx mechanism but by a new mechanism involving sequential SN1-type reactions. This unnatural oligosaccharide was not decomposed by the natural enzymes owing to the unnatural N-1,2-glycosidic bonds, indicating promise in applications as a new class of glycomaterials. Furthermore, technology for stabilizing proteins using protein–polymer conjugations and polymer chain-folding nanoparticles has recently been developed. Amphiphilic/fluorous methacrylate-based random copolymers bearing polyethylene glycol (PEG) and fluorous side chains formed reversible PEG and fluorous compartments in water and 2H,3H-perfluoropentane (2HPFP), respectively. These copolymers were noncytotoxic and successfully conjugated with lysozymes. They also stabilized lysozyme and α-chymotrypsin in 2HPFP, and the enzymes were not denatured after extraction from 2HPFP.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Imberty A, Varrot A. Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol. 2008;18:567–76.

    Article  CAS  PubMed  Google Scholar 

  2. Kim YJ, Varki A. Perspectives on the significance of altered glycosylation of glycoproteins in cancer. Glycoconj J. 1997;14:569–76.

    Article  CAS  PubMed  Google Scholar 

  3. Lee YC, Lee RT. Carbohydrate–protein interactions: basis of glycobiology. Acc Chem Res. 1995;28:321–7.

    Article  CAS  Google Scholar 

  4. O’Connor SE, Imperiali B. A molecular basis for glycosylation-induced conformational switching. Chem Biol. 1998;5:427–37.

    Article  Google Scholar 

  5. Hipp MS, Park SH, Ulrich Hartl F. Proteostasis impairment in protein- misfolding and -aggregation diseases. Trends Cell Biol. 2014;24:506–14.

    Article  CAS  PubMed  Google Scholar 

  6. Chiti F, Dobson CM. Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem. 2017;86:27–68.

    Article  CAS  PubMed  Google Scholar 

  7. Hetz C, Chevet E, Harding HP. Targeting the unfolded protein response in disease. Nat Rev Drug Discov. 2013;12:703–19.

    Article  CAS  PubMed  Google Scholar 

  8. Liu Q, Chen G, Chen H. Chemical synthesis of glycosaminoglycan-mimetic polymers. Polym Chem. 2019;10:164–71.

    Article  CAS  Google Scholar 

  9. Nguyen TH, Kim SH, Decker CG, Wong DY, Loo JA, Maynard HD. A heparin-mimicking polymer conjugate stabilizes basic fibroblast growth factor. Nat Chem. 2013;5:221–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ando M, Akiyama M, Okuno D, Hirano M, Ide T, Sawada S, et al. Liposome chaperon in cell-free membrane protein synthesis: one-step preparation of KcsA-integrated liposomes and electrophysiological analysis by the planar bilayer method. Biomater Sci. 2016;4:258–64.

    Article  CAS  PubMed  Google Scholar 

  11. Ando M, Schikula S, Sasaki Y, Akiyoshi K. Proteoliposome engineering with cell-free membrane protein synthesis: control of membrane protein sorting into liposomes by chaperoning systems. Adv Sci. 2018;5:1800524.

    Article  Google Scholar 

  12. Nourian Z, Roelofsen W, Danelon C. Triggered gene expression in fed-vesicle microreactors with a multifunctional membrane. Angew Chem Int Ed. 2012;51:3114–8.

    Article  CAS  Google Scholar 

  13. Palivan CG, Goers R, Najer A, Zhang X, Cara A, Meier W. Bioinspired polymer vesicles and membranes for biological and medical applications. Chem Soc Rev. 2016;45:377–411.

    Article  CAS  PubMed  Google Scholar 

  14. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS  PubMed  Google Scholar 

  15. Yokoyama M, Miyauchi M, Yamada N, Okano T, Sakurai Y, Kataoka K, et al. Characterization and anticancer activity of the micelle-forming polymeric anticancer drug adriamycin-conjugated poly(ethylene glycol)-poly(aspartic acid) block copolymer. Cancer Res. 1990;50:1693–700.

    CAS  PubMed  Google Scholar 

  16. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: polymeric micelles that are responsive to intracellular pH change. Angew Chem Int Ed. 2003;42:4640–3.

    Article  CAS  Google Scholar 

  17. Liu D, Wang T, Lu Y. Untethered microrobots for active drug delivery: from rational design to clinical settings. Adv Healthc Mater. 2022;11:2102253.

    Article  CAS  Google Scholar 

  18. Mi P, Cabral H, Kataoka K. Ligand-installed nanocarriers toward precision therapy. Adv Mater. 2020;32:1902604.

    Article  CAS  Google Scholar 

  19. Qi W, Zhang Y, Wang J, Tao G, Wu L, Kochovski Z, et al. Deprotection-induced morphology transition and immunoactivation of glycovesicles: a strategy of smart delivery polymersomes. J Am Chem Soc. 2018;140:8851–7.

    Article  CAS  PubMed  Google Scholar 

  20. Yang J, Du Q, Li L, Wang T, Feng Y, Nieh MP, et al. Glycosyltransferase-induced morphology transition of glycopeptide self-assemblies with proteoglycan residues. ACS Macro Lett. 2020;9:929–36.

    Article  CAS  PubMed  Google Scholar 

  21. Nishimura T, Hirose S, Sasaki Y, Akiyoshi K. Substrate-sorting nanoreactors based on permeable peptide polymer vesicles and hybrid liposomes with synthetic macromolecular channels. J Am Chem Soc. 2020;142:154–61.

    Article  CAS  PubMed  Google Scholar 

  22. Vong LB, Trinh NT, Nagasaki Y. Design of amino acid-based self-assembled nano-drugs for therapeutic applications. J Control Release. 2020;326:140–9.

    Article  CAS  PubMed  Google Scholar 

  23. Kudo S, Nagasaki Y. A novel nitric oxide-based anticancer therapeutics by macrophage-targeted poly(L-arginine)-based nanoparticles. J Control Release. 2015;217:256–62.

    Article  CAS  PubMed  Google Scholar 

  24. Vong LB, Sato Y, Chonpathompikunlert P, Tanasawet S, Hutamekalin P, Nagasaki Y. Self-assembled polydopamine nanoparticles improve treatment in Parkinson’s disease model mice and suppress dopamine-induced dyskinesia. Acta Biomater. 2020;109:220–8.

    Article  CAS  PubMed  Google Scholar 

  25. Shashni B, Tajika Y, Nagasaki Y. Design of enzyme-responsive short-chain fatty acid-based self-assembling drug for alleviation of type 2 diabetes mellitus. Biomaterials. 2021;275:120877.

    Article  CAS  PubMed  Google Scholar 

  26. Koda Y, Terashima T, Ouchi M. Unnatural oligoaminosaccharides with N-1,2-glycosidic bonds prepared by cationic ring-opening polymerization of 2-oxazoline-based heterobicyclic sugar monomers. ACS Macro Lett. 2019;8:1456–60.

    Article  CAS  PubMed  Google Scholar 

  27. Koda Y, Terashima T, Sawamoto M, Maynard HD. Amphiphilic/fluorous random copolymers as a new class of non-cytotoxic polymeric materials for protein conjugation. Polym Chem. 2015;6:240–7.

    Article  CAS  Google Scholar 

  28. Koda Y, Terashima T, Maynard HD, Sawamoto M. Protein storage with perfluorinated PEG compartments in a hydrofluorocarbon solvent. Polym Chem. 2016;7:6694–8.

    Article  CAS  Google Scholar 

  29. Abuchowski A, Mccoy JR, Palczuk NC, Es TV, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977;252:3582–6.

    Article  CAS  PubMed  Google Scholar 

  30. Messina MS, Messina KMM, Bhattacharya A, Montgomery HR, Maynard HD. Preparation of biomolecule-polymer conjugates by grafting-from using ATRP, RAFT, or ROMP. Prog Polym Sci. 2020;100:101186.

    Article  CAS  PubMed  Google Scholar 

  31. Tamura T, Hamachi I. Chemistry for covalent modification of endogenous/native proteins: from test tubes to complex biological systems. J Am Chem Soc. 2019;141:2782–99.

    Article  CAS  PubMed  Google Scholar 

  32. Koda Y, Terashima T, Sawamoto M. LCST-type phase separation of poly[poly(ethylene glycol) methyl ether methacrylate]s in hydrofluorocarbon. ACS Macro Lett. 2015;4:1366–9.

    Article  CAS  PubMed  Google Scholar 

  33. Koda Y, Terashima T, Sawamoto M. Multimode self-folding polymers via reversible and thermoresponsive self-assembly of amphiphilic/fluorous random copolymers. Macromolecules. 2016;49:4534–43.

    Article  CAS  Google Scholar 

  34. Ihsan AB, Koyama Y. Substituent optimization of (1→2)-glucopyranan for tough, strong, and highly stretchable film with dynamic interchain interactions. ACS Macro Lett. 2020;9:720–4.

    Article  CAS  PubMed  Google Scholar 

  35. Dey S, Lo HJ, Wong CH. An efficient modular one-pot synthesis of heparin-based anticoagulant idraparinux. J Am Chem Soc. 2019;141:10309–14.

    Article  CAS  PubMed  Google Scholar 

  36. Tanaka M, Sato K, Yoshida R, Nishi N, Oyamada R, Inaba K, et al. Diastereoselective desymmetric 1,2-cis-glycosylation of meso-diols via chirality transfer from a glycosyl donor. Nat Commun. 2020;11:2431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hettikankanamalage AA, Lassfolk R, Ekholm FS, Leino R, Crich D. Mechanisms of stereodirecting participation and ester migration from near and far in glycosylation and related reactions. Chem Rev. 2020;120:7104–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kinnaert C, Daugaard M, Nami F, Clausen MH. Chemical synthesis of oligosaccharides related to the cell walls of plants and algae. Chem Rev. 2017;117:11337–405.

    Article  CAS  PubMed  Google Scholar 

  39. Rademacher TW, Parekh RB, Dwek RA. Glycobiology. Ann Rev Biochem. 1988;57:785–838.

    Article  CAS  PubMed  Google Scholar 

  40. Bertozzi CR, Kiessling LL. Chemical glycobiology. Science. 2001;291:2357–64.

    Article  CAS  PubMed  Google Scholar 

  41. Miura Y, Hoshino Y, Seto H. Glycopolymer nanobiotechnology. Chem Rev. 2016;116:1673–92.

    Article  CAS  PubMed  Google Scholar 

  42. Hu Y, Li Y, Xu FJ. Versatile functionalization of polysaccharides via polymer grafts: from design to biomedical applications. Acc Chem Res. 2017;50:281–92.

    Article  CAS  PubMed  Google Scholar 

  43. Su L, Feng Y, Wei K, Xu X, Liu R, Chen G. Carbohydrate-based macromolecular biomaterials. Chem Rev. 2021;121:10950–1029.

    Article  CAS  PubMed  Google Scholar 

  44. Tahara Y, Akiyoshi K. Current advances in self-assembled nanogel delivery systems for immunotherapy. Adv Drug Deliv Rev. 2015;95:65–76.

    Article  CAS  PubMed  Google Scholar 

  45. Heinzea T, Liebert T. Unconventional methods in cellulose functionalization. Prog Polym Sci. 2001;26:1689–762.

    Article  Google Scholar 

  46. Kadokawa J. Precision polysaccharide synthesis catalyzed by enzymes. Chem Rev. 2011;111:4308–45.

    Article  CAS  PubMed  Google Scholar 

  47. Chen G. The past ten years of carbohydrate polymers in ACS Macro Letters. ACS Macro Lett. 2021;10:1145–50.

    Article  CAS  PubMed  Google Scholar 

  48. Ichikawa H, Kobayashi K, Sumitomo H, Schuerch C. Synthesis of A β-(1→6)-linked polysaccharide via ring-opening polymerization with neighboring-group participation. Carbohydr Res. 1988;179:315–20.

    Article  CAS  Google Scholar 

  49. Okada M, Kubota Y. Chemical synthesis of polysaccharides XI. ring-opening polymerization of 1,6-anhydro-2-O-(p-substituted benzoyl) deoxysugar derivatives. Polym J. 1992;24:1137–45.

    Article  CAS  Google Scholar 

  50. Kobayashi K, Ishii T, Okada M, Schuerch C. Steric control in ring-opening polymerization of 1,6-anhydro galactose derivatives by neighboring group participation. Polym J. 1993;25:49–57.

    Article  CAS  Google Scholar 

  51. Stidham SE, Chin SL, Dane EL, Grinstaff MW. Carboxylated glucuronic poly-amido-saccharides as protein stabilizing agents. J Am Chem Soc. 2014;136:9544–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Xiao R, Dane EL, Zeng J, McKnight CJ, Grinstaff MW. Synthesis of altrose poly-amido-saccharides with β-N‐(1→2)‐D‐amide linkages: a right-handed helical conformation engineered in at the monomer level. J Am Chem Soc. 2017;139:14217–23.

    Article  CAS  PubMed  Google Scholar 

  53. Su L, Khan S, Fan J, Lin YN, Wang H, Gustafson TP, et al. Functional sugar-based polymers and nanostructures comprised of degradable poly(D-glucose carbonate)s. Polym Chem. 2017;8:1699–707.

    Article  CAS  Google Scholar 

  54. Felder SE, Redding MJ, Noel A, Grayson SM, Wooley KL. Organocatalyzed ROP of a glucopyranoside derived five-membered cyclic carbonate. Macromolecules. 2018;51:1787–97.

    Article  CAS  Google Scholar 

  55. Deleray A, Kramer JR. Biomimetic glycosylated polythreonines by N-carboxyanhydride polymerization. Biomacromolecules. 2022;23:1453–61.

    Article  CAS  PubMed  Google Scholar 

  56. Mancini RJ, Lee J, Maynard HD. Trehalose glycopolymers for stabilization of protein conjugates to environmental stressors. J Am Chem Soc. 2012;134:8474–9.

    Article  CAS  PubMed  Google Scholar 

  57. Ishida T, Ichikawa T, Ichihara M, Sadzuka Y, Kiwada H. Effect of the physicochemical properties of initially injected liposomes on the clearance of subsequently injected PEGylated liposomes in mice. J Control Release. 2004;95:403–12.

    Article  CAS  PubMed  Google Scholar 

  58. Lila ASS, Kiwada H, Ishida T. The accelerated blood clearance (ABC) phenomenon: clinical challenge and approaches to manage. J Contol Release. 2013;172:38–47.

    Article  Google Scholar 

  59. Nagai R, Mori T, Yamamoto Y, Kaji Y, Yonei Y. Significance of advanced glycation end products in aging-related disease. Anti-Aging Med. 2010;7:112–9.

    Article  Google Scholar 

  60. Aragonès G, Rowan S, Francisco SG, Yang W, Weinberg J, Taylor A, et al. Glyoxalase system as a therapeutic target against diabetic retinopathy. Antioxidants. 2020;9:1062.

    Article  PubMed Central  Google Scholar 

  61. Shimizu H, Ohue-Kitano R, Kimura I. Regulation of host energy metabolism by gut microbiota-derived short-chain fatty acids. Glycative Stress Res. 2019;6:181–91.

    Google Scholar 

  62. de Kort BJ, Koch SE, Wissing TB, Krebber MM, Bouten CVC, Smits AIPM. Immuno-regenerative biomaterials for in situ cardiovascular tissue engineering – Do patient characteristics warrant precision engineering? Adv Drug Deliv Rev. 2021;178:113960.

    Article  PubMed  Google Scholar 

  63. Napoli N, Chandran M, Pierroz DD, Abrahamsen B, Schwartz AV, Ferrari SL. Mechanisms of diabetes mellitus- induced bone fragility. Nat Rev Endocrinol. 2017;13:208–19.

    Article  CAS  PubMed  Google Scholar 

  64. Vitek MP, Bhattacharya K, Glendening JM, Stopa E, Vlassara H, Bucala R, et al. Advanced glycation end products contribute to amyloidosis in alzheimer disease. Proc Natl Acad Sci USA. 1994;91:4766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takahashi N, Harada M, Azhary JMK, Kunitomi C, Nose E, Terao H, et al. Accumulation of advanced glycation end products in follicles is associated with poor oocyte developmental competence. Mol Hum Reprod. 2019;25:684–94.

    Article  CAS  PubMed  Google Scholar 

  66. Fehl C, Hanover JA. Tools, tactics and objectives to interrogate cellular roles of O-GlcNAc in disease. Nat Chem Biol. 2022;18:8–17.

    Article  CAS  PubMed  Google Scholar 

  67. Hansel TT, Kropshofer H, Singer T, Mitchell JA, George AJT. The safety and side effects of monoclonal antibodies. Nat Rev Drug Discov. 2010;9:325–38.

    Article  CAS  PubMed  Google Scholar 

  68. Gombotz WR, Wee SF. Protein release from alginate matrices. Adv Drug Deliv Rev. 2012;64:194–205.

    Article  Google Scholar 

  69. Dutta K, Hu D, Zhao B, Ribbe AE, Zhuang J, Thayumanavan S. Templated self-assembly of a covalent polymer network for intracellular protein delivery and traceless release. J Am Chem Soc. 2017;139:5676–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rose DA, Treacy JW, Yang ZJ, Ko JH, Houk KN, Maynard HD. Self-immolative hydroxybenzylamine linkers for traceless protein modification. J Am Chem Soc. 2022;144:6050–8.

    Article  CAS  PubMed  Google Scholar 

  71. Sasaki Y, Akiyoshi K. Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec. 2010;10:366–76.

    CAS  PubMed  Google Scholar 

  72. Harada M, Takahashi N, Mk Azhary J, Kunitomi C, Fujii T, Osuga Y. Endoplasmic reticulum stress: a key regulator of the follicular microenvironment in the ovary. Mol Hum Reprod. 2021;27:gaaa088.

    Article  PubMed  Google Scholar 

  73. Horváth IT, Rábai J. Facile catalyst separation without water: fluorous biphase hydroformylation of olefins. Science. 1994;266:72–5.

    Article  PubMed  Google Scholar 

  74. Yao H, Sheng K, Sun J, Yan S, Hou Y, Lu H, et al. Secondary structure drives self-assembly in weakly segregated globular protein–rod block copolymers. Polym Chem. 2020;11:3032–45.

    Article  CAS  Google Scholar 

  75. Banani SF, Lee HO, Hyman AA, Rosen MK. Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 2017;18:285–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nüske E, et al. Phase separation of a yeast prion protein promotes cellular fitness. Science. 2018;359:eaao5654.

    Article  PubMed  Google Scholar 

  77. Harris IS, DeNicola GM. The complex interplay between antioxidants and ROS in cancer. Trends Cell Biol. 2020;30:440–51.

    Article  CAS  PubMed  Google Scholar 

  78. Koda Y, Terashima T, Nomura A, Ouchi M, Sawamoto M. Fluorinated microgel-core star polymers as fluorous compartments for molecular recognition. Macromolecules. 2011;44:4574–8.

    Article  CAS  Google Scholar 

  79. Koda Y, Terashima T, Sawamoto M. Fluorous microgel star polymers: selective recognition and separation of polyfluorinated surfactants and compounds in water. J Am Chem Soc. 2014;136:15742–8.

    Article  CAS  PubMed  Google Scholar 

  80. Ouchi M, Terashima T, Sawamoto M. Transition metal-catalyzed living radical polymerization: toward perfection in catalysis and precision polymer synthesis. Chem Rev. 2009;109:4963–5050.

    Article  CAS  PubMed  Google Scholar 

  81. Koda Y, Terashima T, Takenaka M, Sawamoto M. Star polymer gels with fluorinated microgels via star–star coupling and cross-linking for water purification. ACS Macro Lett. 2015;4:377–80.

    Article  CAS  PubMed  Google Scholar 

  82. Koda Y, Terashima T, Sawamoto M. Fluorinated microgel star polymers as fluorous nanocapsules for the encapsulation and release of perfluorinated compounds. Polym Chem. 2015;6:5663–74.

    Article  CAS  Google Scholar 

  83. Koda Y, Terashima T, Sawamoto M. Fluorinated microgels in star polymers: from in-core dynamics to fluorous encapsulation. Macromolecules. 2015;48:2901–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author appreciates the support of the Japan Society for the Promotion of Science (JSPS) KAKENHI for this research through a Grant-in-Aid for Young Scientists (B, 17K14494; 20K15336) for the unnatural saccharide project. The author further thanks his supervisors in the protein projects, Prof. Mituso Sawamoto (Chubu Univ.), Prof. Takaya Terashima (Kyoto Univ.) and Prof. Heather D. Maynard (University of California, Los Angeles; UCLA), for their kind support and guidance. The author is also grateful to JSPS for a Grant-in-Aid for JSPS Research Fellows (DC1: 24-6140) for his fluorous projects. The author would like to thank AJE for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuta Koda.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koda, Y. Unnatural biopolymers of saccharides and proteins conjugated with poly(2-oxazoline) and methacrylate-based polymers: from polymer design to bioapplication. Polym J 54, 1431–1444 (2022). https://doi.org/10.1038/s41428-022-00695-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00695-z

Search

Quick links