Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Morphologies of polymer chains adsorbed on inorganic nanoparticles in a polymer composite as revealed by atomic-resolution electron microscopy

Abstract

Polymers adsorbed on nanoparticles (NPs) play essential roles in determining the physical properties of polymer nanocomposites. Herein, polymer chain structures (morphologies) on NPs and their determining factors were investigated. A model polymer composite comprising a polystyrene (PS) matrix, gold NPs (GNPs), and a small amount of poly(4-iodostyrene) (P4IS) was prepared. The polymer chain morphologies of P4IS adsorbed on GNPs inside the PS matrix were visualized by using annular dark-field scanning transmission electron microscopy, which enabled us to observe clearly the iodine atoms in P4IS. This observation revealed that the P4IS polymer chains were adsorbed on GNPs with a unique morphology wherein 1–2 molecular layers of P4IS surrounded a GNP, and the rest of the P4IS was aggregated at the side of the GNP. The P4IS aggregates were estimated to be composed of single polymer chains. Adsorption of P4IS onto GNPs in a PS matrix was determined to be energetically viable via molecular dynamics simulations. Furthermore, the preferred morphologies of the P4IS polymer chains on the GNPs were analyzed based on the conformational entropy of the polymer chains. The characteristics of polymer chains adsorbed on inorganic NPs were clarified in this study, and they are essential in controlling the performance of polymer nanocomposites at the molecular level.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Al-Maadeed M, Ponnamma D, Carignano M. Polymer science and innovative applications: materials, techniques, and future developments. Elsevier; 2020.

  2. Zou H, Wu S, Shen J. Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev. 2008;108:3893–957.

    Article  CAS  PubMed  Google Scholar 

  3. Lee DW, Yoo BR. Advanced silica/polymer composites: Materials and applications. J Ind Eng Chem. 2016;38:1–12.

    Article  Google Scholar 

  4. Müller K, Bugnicourt E, Latorre M, Jorda M, Sanz YE, Lagaron JM, et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy fields. Nanomaterials. 2017;7:74.

    Article  PubMed Central  Google Scholar 

  5. Bitinis N, Hernandez M, Verdejo R, Kenny JM. Recent advances in clay/polymer nanocomposites. Adv Mater. 2011;23:5229–36.

    Article  CAS  PubMed  Google Scholar 

  6. Mark JE, Erman B, Roland M. The science and technology of rubber, Fourth Edition. Academic Press; 2013.

  7. Rajesh, Ahuja T, Kumar D. Recent progress in the development of nanostructured conducting polymers/nanocomposites for sensor applications. Sensors Actuators B Chem. 2009;136:275–86.

    Article  CAS  Google Scholar 

  8. Ahmed S, Jones FR. A review of particulate reinforcement theories for polymer composites. Composites. 1990;25:4933–42.

    CAS  Google Scholar 

  9. Noguchi T, Niihara K, Kurashima A, Iwamoto R, Miura T, Koyama A, et al. Cellulose nanofiber-reinforced rubber composites prepared by TEMPO-functionalization and elastic kneading. Compos Sci Technol. 2021;210:108815.

    Article  CAS  Google Scholar 

  10. Noguchi T, Endo M, Niihara K, Jinnai H, Isogai A. Cellulose nanofiber/elastomer composites with high tensile strength, modulus, toughness, and thermal stability prepared by high-shear kneading. Compos Sci Technol. 2020;188:108005.

    Article  CAS  Google Scholar 

  11. Jinnai H, Shinbori Y, Kitaoka T, Akutagawa K. Three-dimensional structure of a nanocomposite material consisting of two kinds of nanofillers and rubbery matrix studied by transmission electron microtomography. Macromolecules. 2007;40:6758–64.

    Article  CAS  Google Scholar 

  12. Eggers H, Schummer P. Reinforcement mechanisms in carbon black and silica loaded rubber melts at low stresses. Rubber Chem Technol. 1996;69:253–65.

    Article  CAS  Google Scholar 

  13. Balazs AC, Emrick T, Russell TP. Nanoparticle polymer composites: where two small worlds meet. Science. 2006;314:1107–11.

    Article  CAS  PubMed  Google Scholar 

  14. Baeza GP, Genix A-C, Degrandcourt C, Petitjean L, Gummel J, Schweins R, et al. Effect of grafting on rheology and structure of a simplified industrial nanocomposite silica/SBR. Macromolecules. 2013;46:6621–33.

    Article  CAS  Google Scholar 

  15. Baeza GP, Genix A-C, Degrandcourt C, Gummel J, Mujtaba A, Saalwächter K, et al. Studying twin samples provides evidence for a unique structure-determining parameter in simplifed industrial nanocomposites. ACS Macro Lett. 2014;3:448–52.

    Article  CAS  PubMed  Google Scholar 

  16. Akutagawa K, Yamaguchi K, Yamamoto A, Heguri H, Jinnai H, Shinbori Y. Mesoscopic mechanical analysis of filled elastomer with 3d-finite element analysis and transmission electron microtomography. Rubber Chem Technol. 2008;81:182–9.

    Article  CAS  Google Scholar 

  17. Packman PF. Effects of surface modifications on the peel strength of copper-based polymer/metal interfaces with characteristic morphologies. J Adhes. 1993;40:139–50.

    Article  Google Scholar 

  18. Miyata T, Nagao T, Watanabe D, Kumagai A, Akutagawa K, Morita H, et al. Nanoscale stress distribution in silica-nanoparticle-filled rubber as observed by transmission electron microscopy: implications for tire application. ACS Appl Nano Mater. 2021;4:4452–61.

    Article  CAS  Google Scholar 

  19. Kundie F, Azhari CH, Muchtar A, Ahmad ZA. Effects of filler size on the mechanical properties of polymer-filled dental composites: a review of recent developments. J Phys Sci. 2018;29:141–65.

    Article  CAS  Google Scholar 

  20. Takahashi S, Paul DR. Gas permeation in poly(ether imide) nanocomposite membranes based on surface-treated silica. Part 1: without chemical coupling to matrix. Polymer. 2006;47:7519–34.

    Article  CAS  Google Scholar 

  21. Watanabe D, Miyata T, Nagao T, Kumagai A, Jinnai H. Crack propagation behaviors in a nanoparticle‐filled rubber studied by in situ tensile electron microscopy. J Polym Sci. 2021;60:1277–84.

    Article  Google Scholar 

  22. Shimizu K, Miyata T, Nagao T, Kumagai A, Jinnai H. Visualization of the tensile fracture behaviors at adhesive interfaces between brass and sulfur-containing rubber studied by transmission electron microscopy. Polymer. 2019;181:121789.

    Article  Google Scholar 

  23. Liu Y, Shigemoto Y, Hanada T, Miyamae T, Kawasaki K, Horiuchi S. Role of chemical functionality in the adhesion of aluminum and isotactic polypropylene. ACS Appl Mater Interfaces. 2021;13:11497–506.

    Article  CAS  PubMed  Google Scholar 

  24. Abbott S. Sticking together: the science of adhesion. Royal Society of Chemistry; 2020.

  25. Kwon NK, Kim H, Shin TJ, Saalwächter K, Park J, Kim SY. Control of particle dispersion with autophobic dewetting in polymer nanocomposites. Macromolecules. 2020;53:4836–44.

    Article  CAS  Google Scholar 

  26. Sunday D, Ilavsky J, Green DL. A phase diagram for polymer-grafted nanoparticles in homopolymer matrices. Macromolecules. 2012;45:4007–11.

    Article  CAS  Google Scholar 

  27. Kim S, Oh SM, Kim SY, Park JD. Role of adsorbed polymers on nanoparticle dispersion in drying polymer nanocomposite films. Polymers. 2021;13:2960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koga T, Hashimoto T, Takenaka M, Aizawa K, Amino N, Nakamura M, et al. New insight into hierarchical structures of carbon black dispersed in polymer matrices: a combined small-angle scattering study. Macromolecules. 2008;41:453–64.

    Article  CAS  Google Scholar 

  29. Kishimoto H, Shinohara Y, Amemiya Y, Inoue K, Suzuki Y, Takeuchi A, et al. Structural analysis of filler in rubber composite under stretch with time-resolved two-dimensional ultrasmall-angle X-ray scattering. Rubber Chem Technol. 2008;81:541–51.

    Article  CAS  Google Scholar 

  30. Lapra A, Clément F, Bokobza L, Monnerie L. Straining effects in silica-filled elastomers investigated by atomic force microscopy: From macroscopic stretching to nanoscale strainfield. Rubber Chem Technol. 2003;76:60–81.

    Article  CAS  Google Scholar 

  31. Ikeda Y, Kato A, Shimanuki J, Kohjiya S, Tosaka M, Poompradub S, et al. Nano-structural elucidation in carbon black loaded NR vulcanizate by 3D-TEM and in situ WAXD measurements. Rubber Chem Technol. 2007;80:251–64.

    Article  CAS  Google Scholar 

  32. Hagita K, Higuchi T, Jinnai H. Superresolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning. Sci Rep. 2018;8:1–8.

    Article  Google Scholar 

  33. Baeza GP, Genix A-C, Degrandcourt C, Petitjean L, Gummel J, Couty M, et al. Multiscale filler structure in simplified industrial nanocomposite silica/SBR systems studied by SAXS and TEM. Macromolecules. 2013;46:317–29.

    Article  CAS  Google Scholar 

  34. Yamaguchi D, Yuasa T, Sone T, Tominaga T, Noda Y, Koizumi S, et al. Hierarchically self-organized dissipative structures of filler particles in poly(styrene- ran -butadiene) rubbers. Macromolecules. 2017;50:7739–59.

    Article  CAS  Google Scholar 

  35. Hagita K, Tominaga T, Sone T. Large-scale reverse Monte Carlo analysis for the morphologies of silica nanoparticles in end-modified rubbers based on ultrasmall-angle X-ray scattering data. Polymer. 2018;135:219–29.

    Article  CAS  Google Scholar 

  36. Randazzo K, Bartkiewicz M, Graczykowski B, Cangialosi D, Fytas G, Zuo B, et al. Direct visualization and characterization of interfacially adsorbed polymer atop nanoparticles and within nanocomposites. Macromolecules. 2021;54:10224–34.

    Article  CAS  Google Scholar 

  37. Sato YK, Kuwauchi Y, Miyoshi W, Jinnai H. Visualization of chemical bonding in a silica‑filled rubber nanocomposite using STEM‑EELS. Sci Rep. 2020;10:1–8.

    Article  Google Scholar 

  38. Jinnai H. Electron microscopy for polymer structures. Microscopy. 2022;71:i148–i164.

    Article  PubMed  Google Scholar 

  39. Michler GH. Electron microscopy of polymers. Berlin Heidelberg: Springer; 2008.

  40. Miyata T, Uesugi F, Mizoguchi T. Real-space analysis of diffusion behavior and activation energy of individual monatomic ions in a liquid. Sci Adv. 2017;3:e1701546.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Miyata T, Mizoguchi T. High-resolution mapping of molecules in an ionic liquid by scanning transmission electron microscopy. Microscopy. 2018;67:i162–i167.

    Article  CAS  PubMed  Google Scholar 

  42. Yi M, Shen Z. A review on mechanical exfoliation for the scalable production of graphene. J Mater Chem A. 2015;3:11700–15.

    Article  CAS  Google Scholar 

  43. Urakawa O, Swallen SF, Ediger MD, von. Meerwall ED. Self-diffusion and viscosity of low molecular weight polystyrene over a wide temperature range. Macromolecules. 2004;37:1558–64.

    Article  CAS  Google Scholar 

  44. Antonietti M, Coutandin J, Sillescu H. Diffusion of Linear Polystyrene Molecules in Matrices of Different Molecular Weights. Macromolecules. 1986;19:793–8.

    Article  CAS  Google Scholar 

  45. Zhang C, Fujii Y, Tanaka K. Effect of long range interactions on the glass transition temperature of thin polystyrene films. ACS Macro Lett. 2012;1:1317–20.

    Article  CAS  PubMed  Google Scholar 

  46. Barthel J. Dr Probe - high-resolution (S)TEM image simulation software. at http://www.er-c.org/barthel/drprobe/.

  47. Mayo SL, Olafson BD, Goddard WA. DREIDING: a generic force field for molecular simulations. J Phys Chem. 1990;94:8897–909.

    Article  CAS  Google Scholar 

  48. Gasteiger J, Marsili M. Iterative partial equalization of orbital electronegativity-a rapid access to atomic charges. Tetrahedron. 1980;36:3219–28.

    Article  CAS  Google Scholar 

  49. Heinz H, Vaia RA, Farmer BL, Naik RR. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12-6 and 9-6 Lennard-Jones potentials. J Phys Chem C. 2008;112:17281–90.

    Article  CAS  Google Scholar 

  50. Plimpton S. Fast parallel algorithms for short-range molecular dynamics. J Comput Phys. 1995;117:1–19.

    Article  CAS  Google Scholar 

  51. Hockney R, Eastwood J. Computer simulation using particles. CRC Press; 2021.

  52. Tuckerman M, Berne BJ, Martyna GJ. Reversible multiple time scale molecular dynamics. J Chem Phys. 1992;97:1990–2001.

    Article  CAS  Google Scholar 

  53. Goh SH, Lee SY. Miscibility of poly(2,6-dimethyl-1,4-phenylene oxide) with iodinated polystyrene. Eur Polym J. 1989;25:997–9.

    Article  CAS  Google Scholar 

  54. Flory PJ. Thermodynamics of high polymer solutions. J Chem Phys. 1942;10:51–61.

    Article  CAS  Google Scholar 

  55. Huggins ML. Theory of solutions of high polymers. J Am Chem Soc. 1942;64:1712–9.

    Article  CAS  Google Scholar 

  56. Bates FS. Polymer-polymer phase behavior. Science. 1991;251:898–905.

    Article  CAS  PubMed  Google Scholar 

  57. Russell TP, Stein RS. Small-angle X-ray and neutron scattering studies of amorphous polymer blends. J Polym Sci Polym Phys Ed. 1982;20:1593–607.

    Article  CAS  Google Scholar 

  58. Kawagoe Y, Surblys D, Matsubara H, Kikugawa G, Ohara T. Cross-plane and in-plane heat conductions in layer-by-layer membrane: molecular dynamics study. Langmuir. 2020;36:6482–93.

    Article  CAS  PubMed  Google Scholar 

  59. Surblys D, Kawagoe Y, Shibahara M, Ohara T. Molecular dynamics investigation of surface roughness scale effect on interfacial thermal conductance at solid‒liquid interfaces. J Chem Phys. 2019;150:114705.

    Article  PubMed  Google Scholar 

  60. Treloar LRG. The physics of rubber elasticity (Third Edition). Oxford University Press; 2005.

  61. Kumaki J, Nishikawa Y, Hashimoto T. Visualization of single-chain conformations of a synthetic polymer with atomic force microscopy. J Am Chem Soc. 1996;118:3321–2.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank American Journal Experts (www.aje.com) for English language editing. This study was supported by the Advanced Imaging and Modeling Center for Soft-materials (Tohoku AIMcS), Tohoku University Microstructural Characterization Platform in Nanotechnology Platform Project sponsored by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), Japan [JPMX09F(A)-20-TU-0001], Japan Society for the Promotion of Science (JSPS) KAKENHI, Japan [grant numbers 19H00905 and 20K15330], Japan Science and Technology Agency (JST) CREST, Japan [grant numbers JPMJCR1993 and JPMJCR19T4], and IMRAM project [TM, 2021].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Miyata.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyata, T., Kawagoe, Y., Okabe, T. et al. Morphologies of polymer chains adsorbed on inorganic nanoparticles in a polymer composite as revealed by atomic-resolution electron microscopy. Polym J 54, 1297–1306 (2022). https://doi.org/10.1038/s41428-022-00690-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00690-4

This article is cited by

Search

Quick links