Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Intrinsically elastic and self-healing luminescent polyisoprene copolymers formed via covalent bonding and hydrogen bonding design

Abstract

Although development of soft and stretchable materials exhibiting semiconducting functions, such as luminescent or electronic properties, has received growing interest, development of intrinsically self-healing semiconducting materials remains a challenge. In this study, covalent and hydrogen-bonding architectures were used to construct polyisoprene (PI)-based rubber containing luminescent poly[2,7-(9,9-dioctylfluorene)] (PF), and the material exhibited elastic behavior and spontaneous healing. The first demonstration of an engineered hard–soft multiphase, well-dispersed polymer thin film was conducted, wherein the soft phase backbone containing dynamic hydrogen bonds and rubber-like moieties imparted resistance against damage due to repeated stretching, while the hard phase comprising aggregates of rigid PF branches imparted luminescence. Under intense mechanical stress, both the bulk and thin-film states of the crosslinked PF0.16-co-PI0.37-co-PBACO0.47 impressively presented typical elastic performance. Owing to the dynamic nature of the hydrogen bonds within the crosslinked polyisoprene copolymer, the bulk and thin film states exhibited good self-healing and an 83% recovery efficiency following treatment for 24 h at room temperature. This strategy is potentially useful for fabrication of fully flexible electronics with good mechanical properties and many functionalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao W, Ota H, Kiriya D, Takei K, Javey A. Flexible electronics toward wearable sensing. Acc Chem Res. 2019;52:523–33.

    Article  CAS  PubMed  Google Scholar 

  2. Wang P, Hu M, Wang H, Chen Z, Feng Y, Wang J, et al. The evolution of flexible electronics: from nature, beyond nature, and to nature. Adv Sci. 2020;7:2001116.

    Article  CAS  Google Scholar 

  3. Tran H, Feig VR, Liu K, Wu H-C, Chen R, Xu J, et al. Stretchable and fully degradable semiconductors for transient electronics. ACS Cent Sci. 2019;5:1884–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mun J, Ochiai Y, Wang W, Zheng Y, Zheng Y-Q, Wu H-C, et al. A design strategy for high mobility stretchable polymer semiconductors. Nat Commun. 2021;12:3572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tien H-C, Huang Y-W, Chiu Y-C, Cheng Y-H, Chueh C-C, Lee W-Y. Intrinsically stretchable polymer semiconductors: molecular design, processing and device applications. J Mater Chem C. 2021;9:2660–84.

    Article  CAS  Google Scholar 

  6. Choi D, Kim H, Persson N, Chu P-H, Chang M, Kang J-H, et al. Elastomer–polymer semiconductor blends for high-performance stretchable charge transport networks. Chem Mater. 2016;28:1196–204.

    Article  CAS  Google Scholar 

  7. Wang GJN, Shaw L, Xu J, Kurosawa T, Schroeder BC, Oh JY, et al. Inducing elasticity through oligo-siloxane crosslinks for intrinsically stretchable semiconducting polymers. Adv Func Mater 2016;26:7254–62.

    Article  CAS  Google Scholar 

  8. Kim J-H, Noh J, Choi H, Lee J-Y, Kim T-S. Mechanical properties of polymer–fullerene bulk heterojunction films: role of nanomorphology of composite films. Chem Mater. 2017;29:3954–61.

    Article  CAS  Google Scholar 

  9. Wang G-JN, Zheng Y, Zhang S, Kang J, Wu H-C, Gasperini A, et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem Mater. 2019;31:6465–75.

    Article  CAS  Google Scholar 

  10. Au-Duong A-N, Wu C-C, Li Y-T, Huang Y-S, Cai H-Y, Jo Hai I, et al. Synthetic concept of intrinsically elastic luminescent polyfluorene-based copolymers via RAFT polymerization. Macromolecules. 2020;53:4030–7.

    Article  CAS  Google Scholar 

  11. Chen D, Wang D, Yang Y, Huang Q, Zhu S, Zheng Z. Self-healing materials for next-generation energy harvesting and storage devices. Adv Energy Mater. 2017;7:1700890.

    Article  Google Scholar 

  12. Xie T, Vogt BD. A virtual special issue on self-healing materials. ACS Appl Mater Interfac. 2020;12:49277–80.

    Article  CAS  Google Scholar 

  13. Oh JY, Rondeau-Gagné S, Chiu Y-C, Chortos A, Lissel F, Wang G-JN, et al. Intrinsically stretchable and healable semiconducting polymer for organic transistors. Nature. 2016;539:411–5.

    Article  CAS  PubMed  Google Scholar 

  14. Oh Jin Y, Son D, Katsumata T, Lee Y, Kim Y, Lopez J, et al. Stretchable self-healable semiconducting polymer film for active-matrix strain-sensing array. Sci Adv. 2019;5:eaav3097.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chen Y, Kushner AM, Williams GA, Guan Z. Multiphase design of autonomic self-healing thermoplastic elastomers. Nat Chem. 2012;4:467–72.

    Article  CAS  PubMed  Google Scholar 

  16. Hou S, Yu J, Zhuang X, Li D, Liu Y, Gao Z, et al. Phase separation of P3HT/PMMA blend film for forming semiconducting and dielectric layers in organic thin-film transistors for high-sensitivity NO2 detection. ACS Appl Mater Interfac. 2019;11:44521–7.

    Article  CAS  Google Scholar 

  17. Zhang M, Cui Z, Brinson CL. Mechanical properties of hard–soft block copolymers calculated from coarse-grained molecular dynamics models. J Polym Sci Part B: Polym Phys. 2018;56:1552–66.

    Article  CAS  Google Scholar 

  18. Shi W, Lynd NA, Montarnal D, Luo Y, Fredrickson GH, Kramer EJ, et al. Toward strong thermoplastic elastomers with asymmetric miktoarm block copolymer architectures. Macromolecules. 2014;47:2037–43.

    Article  CAS  Google Scholar 

  19. Kato H, Nakatsubo F, Abe K, Yano H. Crosslinking via sulfur vulcanization of natural rubber and cellulose nanofibers incorporating unsaturated fatty acids. RSC Adv. 2015;5:29814–9.

    Article  CAS  Google Scholar 

  20. Flory PJ, Rabjohn N, Shaffer MC. Dependence of elastic properties of vulcanized rubber on the degree of cross linking. J Polym Sci. 1949;4:225–45.

    Article  CAS  Google Scholar 

  21. Marsitzky D, Klapper M, Müllen K. End-functionalization of poly(2,7-fluorene): a key step toward novel luminescent rod−coil block copolymers. Macromolecules. 1999;32:8685–8.

    Article  CAS  Google Scholar 

  22. Lin C-H, Tung Y-C, Ruokolainen J, Mezzenga R, Chen W-C.Poly[2,7-(9,9-dihexylfluorene)]-block-poly(2-vinylpyridine) rod−coil and coil−rod−coil block copolymers: Synthesis, morphology and photophysical properties in methanol/THF mixed solvents.Macromolecules.2008;41:8759–69.

    Article  CAS  Google Scholar 

  23. Tian YQ, Chen CY, Yip HL, Wu WC, Chen WC, Jen AKY. Synthesis, nanostructure, functionality, and application of polyfluorene-block-poly(N-isopropylacrylamide)s. Macromolecules. 2010;43:282–91.

    Article  CAS  Google Scholar 

  24. Widmaier JM, Meyer GC. Glass transition temperature of anionic polyisoprene. Macromolecules. 1981;14:450–2.

    Article  CAS  Google Scholar 

  25. Berglund CA, McKay KW. Viscoelastic properties of a styrene-isoprene-styrene triblock copolymer and its blends with polyisoprene homopolymer and styrene-isoprene diblock copolymer. Polym Eng Sci. 1993;33:1195–203.

    Article  CAS  Google Scholar 

  26. Zeng G, Yu W-L, Chua S-J, Huang W. Spectral and thermal spectral stability study for fluorene-based conjugated polymers. Macromolecules. 2002;35:6907–14.

    Article  CAS  Google Scholar 

  27. Buenviaje C, Ge S, Rafailovich M, Sokolov J, Drake JM, Overney RM. Confined flow in polymer films at interfaces. Langmuir. 1999;15:6446–50.

    Article  CAS  Google Scholar 

  28. Surin M, Marsitzky D, Grimsdale AC, Müllen K, Lazzaroni R, Leclère P. Microscopic morphology of polyfluorene–poly(ethylene oxide) block copolymers: Influence of the block ratio. Adv Func Mater. 2004;14:708–15.

    Article  CAS  Google Scholar 

  29. Wang G-JN, Zheng Y, Zhang S, Kang J, Wu H-C, Gasperini A, et al. Tuning the cross-linker crystallinity of a stretchable polymer semiconductor. Chem Mater. 2018;31:6465–75.

    Article  Google Scholar 

  30. Hsieh H-C, Hung C-C, Watanabe K, Chen J-Y, Chiu Y-C, Isono T, et al. Unraveling the stress effects on the optical properties of stretchable rod-coil polyfluorene-poly(n-butyl acrylate) block copolymer thin films. Polym Chem. 2018;9:3820–31.

    Article  CAS  Google Scholar 

  31. Huang X, Nakagawa S, Houjou H, Yoshie N. Insights into the role of hydrogen bonds on the mechanical properties of polymer networks. Macromolecules. 2021;54:4070–80.

    Article  CAS  Google Scholar 

  32. Kjøniksen A-L, Nyström B. Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly(vinyl alcohol) near the gelation threshold. Macromolecules. 1996;29:5215–22.

    Article  Google Scholar 

  33. Miwa Y, Kurachi J, Kohbara Y, Kutsumizu SJCC. Dynamic ionic crosslinks enable high strength and ultrastretchability in a single elastomer. Commun Chem. 2018;5:1–8.

    Google Scholar 

  34. Hornat CC, Urban MW. Entropy and interfacial energy driven self-healable polymers. Nat Commun. 2020;11:1–9.

    Article  Google Scholar 

  35. Eom Y, Kim S-M, Lee M, Jeon H, Park J, Lee ES, et al. Mechano-responsive hydrogen-bonding array of thermoplastic polyurethane elastomer captures both strength and self-healing. Nat Commun. 2021;12:1–11.

    Article  Google Scholar 

  36. Zhang S, Cheng YH, Galuska L, Roy A, Lorenz M, Chen B, et al. Tacky elastomers to enable tear‐resistant and autonomous self‐healing semiconductor composites. Adv Func Mater. 2020;30:2000663.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology, Taiwan (Contracts: MOST 110-2634-F-002-043 and 110-2221-E-011-009). Y-CC received financial support from the “Advanced Research Center for Green Materials Science and Technology” of The Featured Area Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (No. 110L9006). All authors acknowledge Syntrol Industrial Co. Ltd. (Taipei, Taiwan) and Hitachi High-Tech Technical Support Team (Japan) for their help with the AFM experiments performed with a Hitachi High-Tech Vacuum type AFM5300E with SIS-Access & SIS-QuantiMech.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Cheng Chiu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Au-Duong, AN., Hsu, YC., Chen, KL. et al. Intrinsically elastic and self-healing luminescent polyisoprene copolymers formed via covalent bonding and hydrogen bonding design. Polym J 54, 1331–1343 (2022). https://doi.org/10.1038/s41428-022-00683-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00683-3

This article is cited by

Search

Quick links