Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stereocomplex crystallization behavior and properties of asymmetric combinations of oppositely configured random copolymers based on chiral 2-hydroxyalkanoic acids

Abstract

Here, asymmetric combinations of chiral 2-hydroxyalkanoic acid (2HAA)-based random copolymers with monomer compositions of approximately 50/50, which can form stereocomplex (SC) crystallites, are reported. The copolymer combinations were l-configured individually crystallizable poly(l-lactic acid-co-l-2-hydroxybutanoic acid) [P(LLA-co-L-2HB)] (47/53) or poly(l-2-hydroxybutanoic acid-co-l-2-hydroxy-3-methylbutanoic acid) [P(L-2HB-co-L-2H3MB)] (49/51) and d-configured individually noncrystallizable poly(d-lactic acid-co-d-2-hydroxy-3-methylbutanoic acid) [P(DLA-co-D-2H3MB)] (45/55). The interplanar distance values of each SC crystallite agreed well with those expected from the homopolymer SC crystallites. This finding indicated that all four types of monomer units cocrystallized to form SC crystallites. The melting temperature values of the stereocomplexed P(LLA-co-L-2HB)/P(DLA-co-D-2H3MB) and P(L-2HB-co-L-2H3MB)/P(DLA-co-D-2H3MB) blends ranged from 149.3 to 163.6 °C, which were higher than the values observed for the unblended P(LLA-co-L-2HB) (84.8 and 88.7 °C) and P(L-2HB-co-L-2H3MB) (61.6–133.1 °C). This study shows the high SC crystallizability of the asymmetric combination of l- and d-configured chiral 2HAA-based random copolymers even when one of them was individually noncrystallizable. This result strongly suggests that SC crystallization occurred when the common monomer units were incorporated into both l- and d-configured 2HAA-based random copolymers. SC crystallization of new types of asymmetric combinations of l- and d-configured random copolymers is expected to diversify the attainable properties and biodegradation behavior of chiral 2HAA-based polymer materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vert M, Feijen J, Albertsson A-C, Scott G, Chiellini, E, Eds. Biodegradable Polymers and Plastics, Cambridge: Royal Society of Chemistry, 1992.

  2. Mobley DP Ed. Plastics from Microbes, New York: Hanser Publishers, 1994.

  3. Vert M, Schwarch G, Coudane J. Present and future of PLA polymers. J. Macromol Sci Pure Appl Chem. 1995;A32:787–96.

    Article  CAS  Google Scholar 

  4. Domb AJ, Kost J, Wieseman DM Eds. Handbook of Biodegradable Polymers (Drug Targeting and Delivery, vol. 7), Amsterdam (The Netherlands): Harwood Academic Publishers, 1997.

  5. Kaplan DL Ed. Biopolymers from Renewable Resources, Springer: Berlin (Germany), 1998.

  6. Garlotta D. A literature review of poly(lactic acid). J Polym Environ. 2001;9:63–84.

    Article  CAS  Google Scholar 

  7. Södergård A, Stolt M. Properties of lactic acid based polymers and their correlation with composition. Prog Polym Sci. 2002;27:1123–63.

    Article  Google Scholar 

  8. Albertsson A-C Ed. Degradable aliphatic polyesters (Advances in Polymer Science, Vol.157); Berlin (Germany): Springer, 2002.

  9. Doi Y, Steinbüchel A Eds. Polyesters I, II, III (Biopolymers, Vol. 3a, 3b, 4), Weinheim (Germany): Wiley-VCH, 2002.

  10. Auras R, Lim L-T, Selke SEM, Tsuji, H Eds. Poly(lactic acid): Synthesis, Structures, Properties, Processing, Applications, and End of Life (Wiley Series on Polymer Engineering and Technology), 2nd edition, New Jersey: John Wiley & Sons, Inc., 2022.

  11. Chatani Y, Suehiro K, Ôkita Y, Tadokoro H, Chujo K. Crystal structure of polyesters. I. Crystal structure of polyglycolide. Makromol Chem. 1968;113:215–29.

    Article  CAS  Google Scholar 

  12. De Santis P, Kovacs AJ. Molecular conformation of poly(S-lactic acid). Biopolymer. 1968;6:299–306.

    Article  Google Scholar 

  13. Iwakura Y, Iwata K, Matsuo S, Tohara A. Synthesis of optically active poly(L-α-hydroxyisovalerate) and poly(L-α-hydroxyisocaproate). Makromol Chem. 1971;146:21–32.

    Article  CAS  Google Scholar 

  14. Yin M, Baker GL. Preparation and characterization of substituted polylactides. Macromolecules 1999;32:7711–8.

    Article  CAS  Google Scholar 

  15. Jing F, Smith MR, Baker GL. Cyclohexyl-substituted polyglycolides with high glass transition temperatures. Macromolecules 2007;40:9304–12.

    Article  CAS  Google Scholar 

  16. Tsuji H, Matsuoka H, Itsuno S. Synthesis, physical properties, and crystallization of optically active poly(L-phenyllactic acid) and poly(L-phenyllactic acid-co-L-lactic acid). J Appl Polym Sci. 2008;110:3954–62.

    Article  CAS  Google Scholar 

  17. Tsuji H, Shimizu S. Stereocomplex crystallization and homo-crystallization of enantiomeric Poly(2-hydroxybutyrate)s: effects of molecular weight and crystallization conditions. Polymer 2012;53:5385–92.

    Article  CAS  Google Scholar 

  18. Matsumoto K, Taguchi S. Biosynthetic polyesters consisting of 2-hydroxyalkanoic acids: current challenges and unresolved questions. Appl Microbiol Biotechnol. 2013;97:8011–21.

    Article  CAS  PubMed  Google Scholar 

  19. Andersson SR, Hakkarainen M, Albertsson A-C. Stereocomplexation between PLA-like Substituted Oligomers and the Influence on the Hydrolytic Degradation. Polymer 2013;54:4105–11.

    Article  CAS  Google Scholar 

  20. Buchard A, Carbery DR, Davidson MG, Ivanova PK, Jeffery BJ, Kociok-Kçhn GI, et al. Preparation of stereoregular isotactic poly(mandelic acid) through organocatalytic ring-opening polymerization of a cyclic O-carboxyanhydride. Angew Chem Int Ed. 2014;53:13858–61.

    Article  CAS  Google Scholar 

  21. Tsuji H, Sobue T. Stereocomplex crystallization and homo-crystallization of enantiomeric substituted poly(lactic acid)s, poly(2-hydroxy-3-methylbutanoic acid)s. Polymer 2015;69:186–92.

    Article  CAS  Google Scholar 

  22. Marubayashi H, Mizukami R, Hamada Y, Nojima S. Crystallizability of substituted poly(lactic acid)s: effects of alkyl sidechain structure. Polym Degrad Stab. 2018;153:318–24.

    Article  CAS  Google Scholar 

  23. Hori C, Oishi K, Matsumoto K, Taguchi S, Ooi T. Site-directed saturation mutagenesis of polyhydroxylalkanoate synthase for efficient microbial production of poly[(R)-2-hydroxybutyrate]. J Biosci Bioeng. 2018;125:632–6.

    Article  CAS  PubMed  Google Scholar 

  24. Li M, Tao Y, Tang J, Wang Y, Zhang X, Tao Y, et al. Synergetic organocatalysis for eliminating epimerization in ring-opening polymerizations enables synthesis of stereoregular isotactic polyester. J Am Chem Soc. 2019;141:281–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tsuji H, Nogata S, Gamo H, Hikima K, Matsuda A, Arakawa Y. Synthesis, stereocomplex crystallization and homo-crystallization, and thermal properties and degradation of enantiomeric aromatic poly(lactic acid)s, poly(mandelic acid). Polym Degrad Stab. 2022;195:109803.

  26. Tsuji H, Sobue T. Cocrystallization of monomer units in lactic acid-based bbiodegradable copolymers, poly(L-lactic acid-co-L-2-hydroxybutanoic acid)s. Polymer. 2015;72:202–11.

    Article  CAS  Google Scholar 

  27. Kabe T, Matsumoto K, Terai S, Hikima T, Takata M, Miyake M. et al. Co-crystallization phenomena in biosynthesized isotactic poly[(R)-lactate-co-(R)-2-hydroxybutyrate]s with various lactate unit ratios. Polym Degrad Stab. 2016;132:137–44.

    Article  CAS  Google Scholar 

  28. Tsuji H, Osanai K, Arakawa Y. Stereocomplex crystallization between L- and D-configured staggered asymmetric random copolymers based on 2-hydroxyalkanoic acids. Cryst Growth Des. 2018;18:6009–19.

    Article  CAS  Google Scholar 

  29. Slager J, Domb AJ. Biopolymer stereocomplexes. Adv Drug Deliv Rev. 2003;55:549–83.

    Article  CAS  PubMed  Google Scholar 

  30. Fukushima K, Kimura Y. Stereocomplexed polylactides (Neo-PLA) as high-performance bio-based polymers: their formation, properties, and application. Polym Int. 2006;55:626–42.

    Article  CAS  Google Scholar 

  31. Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci. 2009;34:605–40.

    Article  CAS  Google Scholar 

  32. Saravanan M, Domb AJ. A contemporary review on–polymer stereocomplexes and its biomedical application. Eur J Nanomed. 2013;5:81–6.

    Article  CAS  Google Scholar 

  33. Jing Y, Quan C, Jiang Q, Zhang C, Chao Z. A mini-review on the study of functional biomaterials based on poly(lactic acid) stereocomplex. Polym Rev. 2016;56:262–86.

    Article  CAS  Google Scholar 

  34. Tsuji H. Poly(lactic acid) stereocomplexes: a progress of decade. Adv Drug Deliv Rev. 2016;107:97–135.

    Article  CAS  PubMed  Google Scholar 

  35. Tan BH, Muiruri JK, Li Z, He C. Recent progress in using stereocomplexation for enhancement of thermal and mechanical property of polylactide. ACS Sustain Chem Eng. 2016;4:5370–91.

    Article  CAS  Google Scholar 

  36. Bai H, Deng S, Bai D, Zhang Q, Fu Q. Recent advances in processing of stereocomplex-type polylactide. Macromol Rapid Commun. 2017;38:1700454.

  37. Xie Q, Yu C, Pan, P. Stereocomplex crystallization of polymers with complementary configurations Crystallization in Multiphase Polymer Systems, Elsevier Inc., Amsterdam, Netherlands, 2018, 535–73.

  38. Bandelli D, Alex J, Weber C, Schubert US. Polyester stereocomplexes beyond PLA: could synthetic opportunities revolutionize established material blending? Macromol Rapid Commun. 2020;41:1900560.

  39. Zhang F, Wang H-W, Tominaga K, Hayashi M, Lee S, Nishino T. Elucidation of chiral symmetry breaking in a racemic polymer system with terahertz vibrational spectroscopy and crystal orbital density functional theory. J Phys Chem Lett. 2016;7:4671–6.

    Article  CAS  PubMed  Google Scholar 

  40. Tashiro K, Kouno N, Wang H, Tsuji H. Crystal structure of poly(lactic acid) stereocomplex: random packing model of PDLA and PLLA chains as studied by X-ray diffraction analysis. Macromolecules. 2017;50:804865.

  41. Tashiro K, Wang H, Kouno N, Koshobu J, Watanabe K. Confirmation of the X-ray-analyzed heterogeneous distribution of the PDLA and PLLA chain stems in the crystal lattice of poly(lactic acid) stereocomplex on the basis of the vibrational circular dichroism IR spectral measurement. Macromolecules 2017;50:8066–71.

    Article  CAS  Google Scholar 

  42. Lee S, Kimoto M, Tanaka M, Tsuji H, Nishino T. Crystal modulus of poly (lactic acid)s, and their stereocomplex. Polymer 2018;138:124–31.

    Article  CAS  Google Scholar 

  43. Liu J, Qi X, Feng Q, Lan Q. Suppression of phase separation for exclusive stereocomplex crystallization of a high-molecular-weight racemic Poly(L–lactide)/Poly(D–lactide) blend from the glassy state. Macromolecules. 2020;53:3493–503.

    Article  CAS  Google Scholar 

  44. Sun C, Zheng Y, Xu S, Ni L, Li X, Shan G, et al. Role of chain entanglements in the stereocomplex crystallization between poly(lactic acid) enantiomers. ACS Macro Lett. 2021;10:1023–8.

    Article  CAS  PubMed  Google Scholar 

  45. Tsuji H, Sobue T. Stereocomplexation of quaternary or ternary monomer units and dual stereocomplexation in enantiomeric binary and quaternary polymer blends of poly(2-hydroxybutanoic acid)s, poly(2-hydroxybutanoic acid-co-lactic acid)s, and poly(lactic acid)s. RSC Adv. 2015;5:83331–42.

    Article  CAS  Google Scholar 

  46. Tsuji H, Osanai K, Arakawa Y. Stereocomplex and individual crystallizability of random copolymers based on chiral α-monosubstituted 2-hydroxyalkanoic acids. Cryst Growth Des. 2020;20:1047–57.

    Article  CAS  Google Scholar 

  47. Tsuji H, Osanai K, Arakawa Y. Stereocomplex and individual crystallization behavior of symmetric or enantiomeric substituted Poly(lactic acid)s random copolymers with high crystallizabilities. Polymer. 2021;237:124352.

Download references

Funding

This research was supported by a research grant from The Hibi Science Foundation and JSPS KAKENHI (Grant Number 16K05912).

Author information

Authors and Affiliations

Authors

Contributions

HT: Conceptualization, methodology, supervision, validation, formal analysis, data curation, visualization, original draft preparation, reviewing and editing, project administration, funding acquisition. KO: Resources, investigation, formal analysis, reviewing and editing. YA: Supervision (resources and investigation), reviewing and editing.

Corresponding author

Correspondence to Hideto Tsuji.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsuji, H., Osanai, K. & Arakawa, Y. Stereocomplex crystallization behavior and properties of asymmetric combinations of oppositely configured random copolymers based on chiral 2-hydroxyalkanoic acids. Polym J 54, 1453–1463 (2022). https://doi.org/10.1038/s41428-022-00682-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00682-4

Search

Quick links