Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evolutions of precision radical polymerizations from metal-catalyzed radical addition: living polymerization, step-growth polymerization, and monomer sequence control

Abstract

Metal-catalyzed Kharasch addition or atom transfer radical addition (ATRA) is one of the most efficient radical reactions for controlled syntheses of organic molecules. This reaction proceeds via metal-catalyzed controlled generation of radical species from organic halides, subsequent addition of the radical species to vinyl groups, and capping of the resulting adduct radicals with halogens. Metal-catalyzed radical addition has evolved in various directions and resulted in the development of novel precision radical polymerizations, which allow control over many aspects of vinyl polymer structures, such as molecular weights, terminal groups, architectures, and monomer sequences. This review is focused on the development of metal-catalyzed living radical polymerizations via reversible activation of carbon-halogen bonds, metal-catalyzed step-growth radical polymerizations of designed monomers having an unconjugated vinyl group and a reactive carbon-halogen bond, simultaneous metal-catalyzed chain- and step-growth radical polymerization for syntheses of degradable vinyl copolymers, and vinyl monomer sequence control via combinations of iterative ATRAs and various controlled polymerizations.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Moad G, Solomon DH. The chemistry of radical polymerization: second fully revised edition. Oxford: Elsevier; 2006.

  2. Curran DP. Radical addition reactions. In: Trost BM, Fleming I, editors. Comprehensive organic synthesis. Oxford: Pergamon; 1991. pp. 714–77.

  3. Iqbal J, Bhatia B, Nayyar NK. Transition metal-promoted free-radical reactions in organic synthesis: the formation of carbon-carbon bonds. Chem Rev. 1994;94:519–64.

    Article  CAS  Google Scholar 

  4. Moñoz-Molina JM, Belderrain TR, Pérez PJ. Atom transfer radical reactions as a tool for olefin functionalization – on the way to practical applications. Eur J Inorg Chem. 2011;3155–64.

  5. Pintauer T, Matyjaszewski K. Atom transfer radical addition and polymerization reactions catalyzed by ppm amounts of copper complexes. Chem Soc Rev. 2008;37:1087–97.

    Article  CAS  PubMed  Google Scholar 

  6. Pintauer T. Catalyst regeneration in transition-metal-mediated atom-transfer radical addition (ATRA) and cyclization (ATRC) reactions. Eur J Inorg Chem. 2010;2449–60.

  7. Reiser O. Shining light on copper: unique opportunities for visible-light-catalyzed atom transfer radical addition reactions and related processes. Acc Chem Res. 2016;49:1990–6.

    Article  CAS  PubMed  Google Scholar 

  8. Simal F, Wlodarczak L, Demonceau A, Noels AF. New, highly efficient catalyst precursors for Kharasch additions – [RuCl(Cp*)(PPh3)2] and [RuCl(Ind)(PPh3)2]. Eur J Org Chem. 2001;2689–95.

  9. Severin K. Ruthenium catalysts for the Kharasch reaction. Curr Org Chem. 2006;10:217–24.

    Article  CAS  Google Scholar 

  10. Gossage RA, van de Kuil L, van Koten G. Diaminoarylnickel(II) “pincer” complexes: mechanistic considerations in the Kharasch addition reaction, controlled polymerization, and dendritic transition metal catalysts. Acc Chem Res. 1998;37:423–31.

    Article  Google Scholar 

  11. Nagashima H, Ozaki N, Ishii M, Seki K, Washimiya M, Itoh K. Transition metal-catalyzed radical cyclizations: a low-temperature process for the cyclization of N-protected N-allyltrichloroacetamides to trichlorinated γ-lactams and application to the stereoselective preparation of β,γ-disubstituted γ-lactams. J Org Chem. 1993;58:464–70.

    Article  CAS  Google Scholar 

  12. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization. Chem Rev. 2001;101:3689–745.

    Article  CAS  PubMed  Google Scholar 

  13. Kamigaito M, Ando T, Sawamoto M. Metal-catalyzed living radical polymerization: discovery and developments. Chem Rec. 2001;4:159–75.

    Article  Google Scholar 

  14. Kamigaito M. Recent developments in metal-catalyzed living radical polymerization. Polym J. 2011;43:105–20.

    Article  CAS  Google Scholar 

  15. Kamigaito M, Sawamoto M. Synergistic advances in living cationic and radical polymerizations. Macromolecules. 2020;53:6749–53.

    Article  CAS  Google Scholar 

  16. Kharasch MS, Jensen EV, Urry WH. Addition of carbon tetrachloride and chloroform to olefins. Science. 1945;102:128.

    Article  CAS  PubMed  Google Scholar 

  17. Kharasch MS, Jensen EV, Urry WH. Addition of derivatives of chlorinated acetic acids to olefins. J Am Chem Soc. 1945;67:1626.

    Article  CAS  Google Scholar 

  18. Minisci F. Free-radical additions to olefins in the presence of redox systems. Acc Chem Res. 1975;8:165–71.

    Article  CAS  Google Scholar 

  19. Kamigata N, Kameyama M. Highly selective radical reactions catalyzed by ruthenium complex. J Synth Org Chem. 1989;47:436–47.

    Article  CAS  Google Scholar 

  20. Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of methyl methacrylate with the carbon tetrachloride/dichlorotris(triphenylphosphine)- ruthenium(II)/methylaluminum bis(2,6-di-tert-butylphenoxide) initiating system: possibility of living radical polymerization. Macromolecules. 1995;28:1721–3.

    Article  CAS  Google Scholar 

  21. Wang J-S, Matyjaszewski K. Controlled/“living” radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J Am Chem Soc. 1995;117:5614–5.

    Article  CAS  Google Scholar 

  22. Jenkins AD, Jones RG, Moad G. Terminology for reversible-deactivation radical polymerization previously called “controlled” radical or “living” radical polymerization (IUPAC Recommendations 2010). Pure Appl Chem. 2010;82:483–91.

    Article  CAS  Google Scholar 

  23. Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C. Reversible-deactivation radical polymerization (controlled/living radical polymerization): from discovery to materials deign and applications. Prog Polym Sci. 2020;111:101311.

    Article  CAS  Google Scholar 

  24. Ouchi M, Sawamoto M. 50th anniversary perspective: metal-catalyzed living radical polymerization: discovery and perspective. Macromolecules. 2017;50:2603–14.

    Article  CAS  Google Scholar 

  25. Dworakowska S, Lorandi F, Gorczyński A, Matyjaszewski K. Toward green atom transfer radical polymerization: current status and future challenges. Adv Sci. 2022;9:2106076.

    Article  CAS  Google Scholar 

  26. Matyjaszewski K, Spanswick J. Copper-mediated atom transfer radical polymerization. In: Matyjaszewski K, Möller M, editors. Polymer science; a comprehensive review. Coates G, Sawamoto M. editors. Volume 3. Chain polymerization of vinyl monomers. Amsterdam: Elsevier; 2012. pp. 377–428.

  27. Satoh K, Kamigaito M, Sawamoto M. Transition metal complexes for metal-catalyzed atom transfer controlled/living radical polymerization. In: Matyjaszewski K, Möller M. editors-in-chief. Polymer science; a comprehensive review. Coates G, Sawamoto M. editors. Vol. 3. Chain polymerization of vinyl monomers. Amsterdam: Elsevier; 2012. pp. 429–61.

  28. Kamigaito M. Living radical polymerization: atom transfer radical polymerization. In: Kobayashi S, Müllen K. editors. Encyclopedia of polymeric nanomaterials. Vol 2. Berlin: Springer; 2015. pp. 1122–33.

  29. Fors BP, Hawker CJ. Control of a living radical polymerization of methacrylates by light. Angew Chem Int Ed. 2012;51:8850–3.

    Article  CAS  Google Scholar 

  30. Treat NJ, Sprafke H, Kramer JW, Clark PG, Barton BE, Alaniz JR. et al. Metal-free atom transfer radical polymerization. J Am Chem Soc. 2014;136:16096–101.

    Article  CAS  PubMed  Google Scholar 

  31. Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci. 2016;62:73–125.

    Article  CAS  Google Scholar 

  32. Theriot JC, McCarthy BC, Lim C-H, Miyake GM. Organocatalyzed atom transfer radical polymerization: perspectives on catalyst design and performance. Macromol Rapid Commun. 2017;38:1700040.

    Article  Google Scholar 

  33. Corbin DA, Lim C-H, Miyake GM. Phenothiazines, dihydrophenazines, and phenoxazines: sustainable alternatives to precious-metal-based photoredox catalysts. Aldrichmica Acta. 2019;52:7–21.

    Google Scholar 

  34. Wu C, Corrigan N, Lim C-H, Liu W, Miyake G, Boyer C. Rational design of photocatalysts for controlled polymerization: effect of structures on photocatalytic activities. Chem Rev. 2022;122:5476–518.

    Article  CAS  PubMed  Google Scholar 

  35. Murai S, Sugise R, Sonoda N. [(−)-diop]RhCl-catalyzed asymmetric addition of bromotrichloromethane to styrene. Angew Chem Int Ed Engl. 1981;20:475–6.

    Article  Google Scholar 

  36. Kameyama M, Kamigata N, Kobayashi M. Asymmetric addition of arenesulfonyl chlorides to styrene catalyzed by a ruthenium(II) chiral phosphine complex. Chem Lett. 1986:527–8.

  37. Iizuka Y, Li Z, Satoh K, Kamigaito M, Okamoto Y, Ito J. et al. Chiral (–)-DIOP ruthenium complexes for asymmetric radical addition and living radical polymerization reactions. Eur J Org Chem. 2017:782–91.

  38. Habaue S, Okamoto Y. Stereocontrol in radical polymerization. Chem Rec. 2001;1:46–52.

    Article  CAS  PubMed  Google Scholar 

  39. Yamada K, Nakano T, Okamoto Y. Stereospecific free radical polymerization of vinyl esters using fluoroalcohols as solvents. Macromolecules. 1998;31:7598–605.

    Article  CAS  Google Scholar 

  40. Isobe Y, Yamada K, Nakano T, Okamoto Y. Stereospecific free-radical polymerization of methacrylates using fluoroalcohols as solvents. Macromolecules. 1999;32:5979–81.

    Article  CAS  Google Scholar 

  41. Hirano T. Hydrogen-bond-assisted stereospecific radical polymerization of N-alkylacrylamides. Kobunshi Ronbunshu. 2015;72:218–31.

    Article  CAS  Google Scholar 

  42. Matsumoto A, Nakamura S. Radical polymerization of methyl methacrylate in the presence of magnesium bromide as the Lewis acid. J Appl Polym Sci. 1999;74:290–6.

    Article  CAS  Google Scholar 

  43. Isobe Y, Nakano T, Okamoto Y. Stereocontrol during the free-radical polymerization of methacrylates with Lewis acids. J Polym Sci Part A Polym Chem. 2001;39:1463–71.

    Article  CAS  Google Scholar 

  44. Isobe Y, Fujioka D, Habaue S, Okamoto Y. Efficient Lewis acid-catalyzed stereocontrolled radical polymerization of acrylamides. J Am Chem Soc. 2001;123:7180–1.

    Article  CAS  PubMed  Google Scholar 

  45. Noble BB, Coote ML. Mechanistic perspectives on stereocontrol in Lewis acid-mediated radical polymerization: lessons from small-molecule synthesis. Adv Phys Org Chem. 2015;49:189–258.

    CAS  Google Scholar 

  46. Kamigaito M, Satoh K, Wan D, Koumura K, Shibata T, Okamoto Y. Stereospecific living radical polymerization. ACS Symp Ser. 2006;944:26–39.

    Article  CAS  Google Scholar 

  47. Kamigaito M, Satoh K. Stereospecific living radical polymerization for simultaneous control of molecular weight and tacticity. J Polym Sci Part A Polym Chem. 2006;44:6147–58.

    Article  CAS  Google Scholar 

  48. Kamigaito M, Satoh K. Stereoregulation in living radical polymerization. Macromolecules. 2008;41:269–76.

    Article  CAS  Google Scholar 

  49. Satoh K, Kamigaito M. Stereospecific living radical polymerization: dual control of molecular weight and tacticity for precision polymer synthesis. Chem Rev. 2009;109:5120–56.

    Article  CAS  PubMed  Google Scholar 

  50. Lutz JF, Neugebauer D, Matyjaszewski K. Stereoblock copolymers and tacticity control in controlled/living radical polymerization. J Am Chem Soc. 2003;125:6986–93.

    Article  CAS  PubMed  Google Scholar 

  51. Miura Y, Satoh T, Narumi A, Nishizawa O, Okamoto Y, Kakuchi T. Atom transfer radical polymerization of methyl methacrylate in fuoroalcohol: simultaneous control of molecular weight and tacticity. Macromolecules. 2005;38:1041–3.

    Article  CAS  Google Scholar 

  52. Miura Y, Satoh T, Narumi A, Nishizawa O, Okamoto Y, Kakuchi T. Synthesis of well-defined syndiotactic poly(methyl methacrylate) with low-temperature atom transfer radical polymerization in fluoroalcohol. J Polym Sci Part A Polym Chem. 2006;44:1436–46.

    Article  CAS  Google Scholar 

  53. Shibata T, Satoh K, Kamigaito M, Okamoto Y. Simultaneous control of the stereospecificity and molecular weight in the ruthenium-catalyzed living radical polymerization of methyl and 2-hydroxyethyl methacrylates and sequential synthesis of stereoblock polymers. J Polym Sci Part A Polym Chem. 2006;44:3609–15.

    Article  CAS  Google Scholar 

  54. Miura Y, Shibata T, Satoh K, Kamigaito M, Okamoto Y. Stereogradient polymers by ruthenium-catalyzed stereospecific living radical copolymerization of two monomers with different stereospecificities and reactivities. J Am Chem Soc. 2006;128:16026–7.

    Article  CAS  PubMed  Google Scholar 

  55. Sugiyama Y, Satoh K, Kamigaito M, Okamoto Y. Iron-catalyzed radical polymerization of acrylamides in the presence of Lewis acid for simultaneous control of molecular weight and tacticity. J Polym Sci Part A Polym Chem. 2006;44:2086–98.

    Article  CAS  Google Scholar 

  56. Jiang J, Lu X, Lu Y. Stereospecific preparation of polyacrylamide with low polydispersity by ATRP in the presence of Lewis acid. Polymer. 2008;49:1770–6.

    Article  CAS  Google Scholar 

  57. Wang W, Zhang Z, Zhu J, Zhou N, Zh X. Single electron transfer-living radical polymerization of methyl methacrylate in fluoroalcohol: dual control over molecular weight and tacticity. J Polym Sci Part A Polym Chem. 2009;47:6316–27.

    Article  CAS  Google Scholar 

  58. Idota N, Nagase K, Tanaka K, Okano T, Annaka M. Stereoregulation of thermoresponsive polymer brushes by surface-initiated living radical polymerization and the effect of tacticity on surface wettability. Langmuir. 2010;26:17781–4.

    Article  CAS  PubMed  Google Scholar 

  59. Goh TK, Tan JF, Guntari SN, Satoh K, Blencowe A, Kamigaito M. et al. Nano-to-macroscale poly(methyl methacrylate) stereocomplex assemblies. Angew Chem Int Ed. 2009;48:8707–11.

    Article  CAS  Google Scholar 

  60. Ren JM, Satoh K, Goh TK, Blencowe A, Nagai K, Ishitake K. et al. Stereospecific cyclic poly(methyl methacrylate) and its topology-guided hierarchically controlled supramolecular assemblies. Angew Chem Int Ed. 2014;53:459–64.

    Article  CAS  Google Scholar 

  61. Christofferson AJ, Yiapanis G, Ren JM, Qiao GG, Satoh K, Kamigaito M. et al. Molecular mapping of poly(methyl methacrylate) super-helix stereocomplexes. Chem Sci. 2015;6:1370–8.

    Article  CAS  PubMed  Google Scholar 

  62. Satoh K, Mizutani M, Kamigaito M. Metal-catalyzed radical polyaddition as a novel polymer synthetic route. Chem Commun. 1997:1260–2.

  63. Matyjaszewski K, Gaynor S, Kulfan A, Podwika M. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 1. acrylic AB* monomers in “living” radical polymerizations. Macromolecules. 1997;30:5192–4.

    Article  CAS  Google Scholar 

  64. Matyjaszewski K, Gaynor S, Müller AHE. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 2. kinetics and mechanism of chain growth for the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate. Macromolecules. 1997;30:7034–41.

    Article  CAS  Google Scholar 

  65. Matyjaszewski K, Gaynor S. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization. 3. effect of reaction conditions on the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate. Macromolecules. 1997;30:7042–9.

    Article  CAS  Google Scholar 

  66. Gao C, Yan D. Hyperbranched polymers: from synthesis to applications. Prog Polym Sci. 2004;29:183–275.

    Article  CAS  Google Scholar 

  67. Mizutani M, Satoh K, Kamigaito M. Metal-catalyzed living radical polymerization and radical polyaddition for precision polymer synthesis. J Phys Conf Ser. 2009;184:012025.

    Article  Google Scholar 

  68. Mizutani M, Satoh K, Kamigaito M. Metal-catalyzed radical polyaddition for aliphatic polyesters via evolution of atom transfer radical addition into step-growth polymerization. Macromolecules. 2009;42:472–80.

    Article  CAS  Google Scholar 

  69. Satoh K, Mizutani M, Kamigaito M. Transition metal-catalyzed step-growth radical polymerization. Kobunshi Ronbunshu. 2011;68:436–56.

    Article  CAS  Google Scholar 

  70. Satoh K, Abe T, Kamigaito M. Metal-catalyzed step-growth radical polymerization of AA and BB monomers for monomer sequence regulation. ACS Symp Ser. 2012;1100:133–44.

    Article  CAS  Google Scholar 

  71. Dong B-T, Dong Y-Q, Du F-S, Li Z-C. Controlling polymer topology by atom transfer radical self-condensing polymerization of p-(2-bromoisobutoxylmethyl)styrene. Macromolecules. 2010;43:8790–8.

    Article  CAS  Google Scholar 

  72. Han Y-M, Chen H-H, Huang C-F. Polymerization and degradation of aliphatic polyesters synthesized by atom transfer radical polyaddition. Polym Chem. 2015;6:4565–74.

    Article  CAS  Google Scholar 

  73. Huang C-F, Kuo S-W, Moravčíová D, Liao J-C, Han Y-M, Lee T-H. et al. Effect of variations of CuIIX2/L, surface area of Cu0, solvent, and temperature on atom transfer radical polyaddition of 4-vinylbenzyl 2-bromo-2-isobutyrate inimers. RSC Adv. 2016;6:51816.

    Article  CAS  Google Scholar 

  74. Soejima T, Satoh K, Kamigaito M. Control of stereochemistry in atom transfer radical addition and step-growth radical polymerization by chiral transition metal catalysts. Tetrahedron. 2016;72:7657–64.

    Article  CAS  Google Scholar 

  75. Zhang L-J, Dong B-T, Du F-S, Li Z-C. Degradable thermoresponsive polyesters by atom transfer radical polyaddition and click chemistry. Macromolecules. 2012;45:8580–7.

    Article  CAS  Google Scholar 

  76. Dong B-O, Li Z-L, Zhang L-J, Du F-S, Li Z-L. Synthesis of linear functionalized polyesters by controlled atom transfer radical polyaddition reactions. Polym Chem. 2012;3:2523–30.

    Article  CAS  Google Scholar 

  77. Mizutani M, Satoh K, Kamigaito M. Metal-catalyzed simultaneous chain- and step-growth radical polymerization: marriage of vinyl polymers and polyesters. J Am Chem Soc. 2010;132:7498–507.

    Article  CAS  PubMed  Google Scholar 

  78. Mizutani M, Satoh K, Kamigaito M. Construction of vinyl polymer and polyester or polyamide units in a single polymer chain via metal-catalyzed simultaneous chain- and step-growth radical polymerization of various monomers. Aust J Chem. 2014;67:544–54.

    Article  CAS  Google Scholar 

  79. Zhang X, Dou H, Zhang Z, Zhang X, Zhu X, Zhu J. Fast and effective copper(0)-mediated simultaneous chain- and step-growth radical polymerization at ambient temperature. J Polym Sci Part A Poym Chem. 2013;51:3907–16.

    Article  CAS  Google Scholar 

  80. Mizutani M, Satoh K, Kamigaito M. Degradable poly(N-isopropylacrylamide) with tunable thermosensitivity by simultaneous chain- and step-growth radical polymerization. Macromolecules. 2011;44:2382–6.

    Article  Google Scholar 

  81. Mizutani M, Palermo E, Thoma L, Satoh K, Kamigaito M, Kuroda K. Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization. Biomacromolecules. 2012;13:1554–63.

    Article  CAS  PubMed  Google Scholar 

  82. Satoh K, Ito D, Kamigaito M. Periodic introduction of water-tolerant titanatrane complex to poly(NIPAM) prepared by simultaneous step-growth and living radical polymerization. ACS Symp Ser. 2015;1188:1–14.

    Article  CAS  Google Scholar 

  83. Lutz J-F, Ouchi M, Liu DR, Sawamoto M. Sequence-controlled polymers. Science. 2013;341:1238149.

    Article  PubMed  Google Scholar 

  84. Sollender SC, Schneider RV, Wetzel KS, Boukis AC, Meier MAR. Recent progress in the design of monodisperse, sequence-defined macromolecules. Macromol Rapid Commun. 2017;38:1600711.

    Article  Google Scholar 

  85. De Neve J, Haven JJ, Maes L, Junkers T. Sequence-definition from controlled polymerization: the next generation of materials. Polym Chem. 2018;9:4692–705.

    Article  Google Scholar 

  86. Xu J. Single unit monomer insertion: a versatile platform for macromolecular engineering through radical addition reactions and polymerizations. Macromolecules. 2019;52:9068–93.

    Article  CAS  Google Scholar 

  87. van Genabeek B, Lamers BAG, Hawker CJ, Meijer EW, Gutekunst WB, Schmidt BVKJ. Properties of application of precision oligomer materials; there organic and polymer chemistry join forces. J Polym Sci. 2021;59:373–403.

    Article  Google Scholar 

  88. Ouchi M. Construction methodologies and sequence-oriented properties of sequence-controlled oligomers/polymers generated via radical polymerization. Polym J. 2021;53:239–48.

    Article  CAS  Google Scholar 

  89. Satoh K, Ozawa S, Mizutani M, Nagai K, Kamigaito M. Sequence-regulated vinyl copolymers by metal-catalysed step-growth radical polymerization. Nat Commun. 2010;1:6.

    Article  PubMed  Google Scholar 

  90. Satoh K, Ishizuka K, Hamada T, Handa M, Abe T, Ozawa S. et al. Construction of sequence-regulated vinyl copolymers via iterative single vinyl monomer additions and subsequent metal-catalyzed step-growth radical polymerization. Macromolecules. 2019;52:3327–41.

    Article  CAS  Google Scholar 

  91. Wang C-H, Song Z-Y, Deng X-X, Zhang L-J, Du F-S, Li Z-C. Combination of ATRA and ATRC for the synthesis of periodic vinyl copolymers. Macromol Rapid Commun. 2014;35:474–8.

    Article  CAS  PubMed  Google Scholar 

  92. Miyajima M, Satoh K, Kamigaito M. Sequence-regulated vinyl polymers via iterative atom transfer radical additions and acyclic diene metathesis polymerization. Polym Chem. 2012;12:423–31.

    Article  Google Scholar 

  93. Miyajima M, Satoh K, Horibe T, Ishihara K, Kamigiato M. Multifactor control of vinyl monomer sequence, molecular weight, and tacticity via iterative radical additions and olefin metathesis reactions. J Am Chem Soc. 2020;142:18955–62.

    Article  CAS  PubMed  Google Scholar 

  94. da Silva LC, Rojas G, Schultz MD, Wagener KB. Acyclic diene metathesis polymerization: history, methods and applications. Prog Polym Sci. 2017;69:79–107.

    Article  Google Scholar 

  95. Hillmyer MA, Laredo WR, Grubbs RH. Ring-opening metathesis polymerization of functionalized cyclooctenes by a ruthenium-based metathesis catalyst. Macromolecules. 1995;28:6311–6.

    Article  CAS  Google Scholar 

  96. Zhang J, Matta ME, Hillmyer MA. Synthesis of sequence-specific vinyl copolymers by regioselective ROMP of multiply substituted cyclooctenes. ACS Macro Lett. 2012;1:1383–7.

    Article  CAS  PubMed  Google Scholar 

  97. Li Z-L, Li L, Du F-S, Li Z-C. Acyclic diene metathesis polymerization of tailor-made monomers towards sequence-regulated vinyl copolymers. Chin J Polym Sci. 2013;31:355–62.

    Article  CAS  Google Scholar 

  98. Miyajima M, Satoh K, Kamigaito M. Periodically functionalized sequence-regulated vinyl polymers via iterative atom transfer radical additions and acyclic diene metathesis polymerization. Macromol Chem Phys. 2022;223:2100426.

    Article  CAS  Google Scholar 

  99. Soejima T, Satoh K, Kamigaito M. Synthesis of side-chain-sequenced copolymers using vinyl oligomonomers via sequential single-monomer ATRA. ACS Symp Ser. 2014;1170:189–200.

    Article  CAS  Google Scholar 

  100. Soejima T, Satoh K, Kamigaito M. Monomer sequence regulation in main and side chains of vinyl copolymers: synthesis of vinyl oligomonomers via sequential atom transfer radical addition and their alternating radical copolymerization. ACS Macro Lett. 2015;4:745–9.

    Article  CAS  PubMed  Google Scholar 

  101. Soejima T, Satoh K, Kamigaito M. Sequence-regulated vinyl copolymers with acid and based monomer unit via atom transfer radical addition and alternating radical copolymerization. Polym Chem. 2016;7:4833–41.

    Article  CAS  Google Scholar 

  102. Soejima T, Satoh K, Kamigaito M. Main-chain and side-chain sequence-regulated vinyl copolymers by iterative atom transfer radical additions and 1:1 or 2:1 alternating radical copolymerization. J Am Chem Soc. 2016;138:944–54.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

I offer my sincerest gratitude to my mentors, collaborators, and students, particularly the late Professor Toshinoubu Higashimura, Professor Emeritus Mitsuo Sawamoto, Professor Emeritus Yoshio Okamoto, and Professor Kotaro Satoh at Tokyo Institute Technology, for their guidance in the fascinating field of polymer chemistry, supportive suggestions, fruitful discussions, and dedicated efforts. Financial support by JSPS KAKENHI Grant-in-Aids for Scientific Research (A) (Nos. JP18H03917 and JP22H00333) and Hybrid Catalysis for Enabling Molecular Synthesis on Demand (No. JP20H04809) is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masami Kamigaito.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Dedicated to the memory of the late Professor Toshinobu Higashimura

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kamigaito, M. Evolutions of precision radical polymerizations from metal-catalyzed radical addition: living polymerization, step-growth polymerization, and monomer sequence control. Polym J 54, 1391–1405 (2022). https://doi.org/10.1038/s41428-022-00680-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00680-6

Search

Quick links