Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hydrothermal crosslinking of poly(fluorenylamine) with styryl side chains to produce insoluble fluorescent microparticles

Abstract

Fluorescent microbeads are emerging as optical probes for biological applications. However, insoluble crosslinked microbeads are difficult to synthesize. The existing methodology, in which polymerization occurs within dispersed micelles, is only applicable to a limited number of polymeric compounds. Herein, we report the hydrothermal synthesis of insoluble fluorescent microbeads. The newly designed and synthesized fluorenylamine-based polymers contained two styryl groups and self-assembled into spherical microparticles upon emulsification. In contrast to microparticles heated under atmospheric conditions, the microparticles became insoluble upon hydrothermal treatment and maintained their spherical morphology. Microparticles that contained a mixture of the thermosetting polymer with polystyrene resulted in an enhanced fluorescence quantum yield and a fluorescence color that could be adjusted by the mixing ratio from red to green and blue.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Lassailly F, Griessinger E, Bonnet D. “Microenvironmental contaminations” induced by fluorescent lipophilic dyes used for noninvasive in vitro and in vivo cell tracking. Blood. 2010;115:5347–54. https://doi.org/10.1182/blood-2009-05-224030.

    Article  CAS  PubMed  Google Scholar 

  2. Crawford JM, Braunwald NS. Toxicity in vital fluorescence microscopy: effect of dimethylsulfoxide, rhodamine-123, and DiI-low density lipoprotein on fibroblast growth in vitro. Vitr Cell Dev Biol. 1991;27A:633–8. https://doi.org/10.1007/BF02631106.

    Article  CAS  Google Scholar 

  3. Fei X, Gu Y. Progress in modifications and applications of fluorescent dye probe. Prog Nat Sci. 2009;19:1–7. https://doi.org/10.1016/j.pnsc.2008.06.004.

    Article  CAS  Google Scholar 

  4. Alford R, Simpson HM, Duberman J, Hill GC, Ogawa M, Regino C, et al. Toxicity of organic fluorophores used in molecular imaging: literature review. Mol Imaging. 2009;8:341–54. https://doi.org/10.2310/7290.2009.00031.

    Article  CAS  PubMed  Google Scholar 

  5. Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010;110:2620–40. https://doi.org/10.1021/cr900263j.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sánchez-Martín RM, Alexander L, Bradley M. Multifunctionalized biocompatible microspheres for sensing. Ann N Y Acad Sci. 2008;1130:207–17. https://doi.org/10.1196/annals.1430.004.

    Article  CAS  PubMed  Google Scholar 

  7. Asakura R, Kusayama I, Saito D, Isobe T, Kurokawa K, Hirayama Y, et al. Preparation of fluorescent poly(methyl methacrylate) beads hybridized with Y3Al5O12:Ce3+nanophosphor for biological application. Jpn J Appl Phys. 2007;46:5193–5. https://doi.org/10.1143/JJAP.46.5193.

    Article  CAS  Google Scholar 

  8. Nika L, Gibson T, Konkus R, Karp X. Fluorescent beads are a versatile tool for staging caenorhabditis elegans in different life histories. G3. 2016;6:1923–33. https://doi.org/10.1534/g3.116.030163.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang J, Shikha S, Mei Q, Liu J, Zhang Y. Fluorescent microbeads for point-of-care testing: a review. Microchim Acta. 2019;186:361 https://doi.org/10.1007/s00604-019-3449-y.

    Article  CAS  Google Scholar 

  10. Chern CS. Emulsion polymerization mechanisms and kinetics. Prog Polym Sci. 2006;31:443–86. https://doi.org/10.1016/j.progpolymsci.2006.02.001.

    Article  CAS  Google Scholar 

  11. Palaniappan S, John A. Polyaniline materials by emulsion polymerization pathway. Prog Polym Sci. 2008;33:732–58. https://doi.org/10.1016/j.progpolymsci.2008.02.002.

    Article  CAS  Google Scholar 

  12. Lovell PA, Schork FJ. Fundamentals of emulsion polymerization. Biomacromolecules. 2020;21:4396–441. https://doi.org/10.1021/acs.biomac.0c00769.

    Article  CAS  PubMed  Google Scholar 

  13. Waters H, Kettle J, Chang SW, Su CJ, Wu WR, Jeng US, et al. Organic photovoltaics based on a crosslinkable PCPDTBT analogue; synthesis, morphological studies, solar cell performance and enhanced lifetime. J Mater Chem A. 2013;1:7370–78. https://doi.org/10.1039/C3TA11002H.

    Article  CAS  Google Scholar 

  14. Obora Y. Recent advances in the synthesis of N-alkenyl carbazoles. Tetrahedron Lett. 2018;59:167–72. https://doi.org/10.1016/j.tetlet.2017.12.020.

    Article  CAS  Google Scholar 

  15. Chen SH. On the Stille vinylation reactions with α-styryltrimethyltin. Tetrahedron Lett. 1997;38:4741–4. https://doi.org/10.1016/S0040-4039(97)01026-5.

    Article  CAS  Google Scholar 

  16. Su WF, Chen RT, Chen Y. Thermally crosslinkable hole-transporting poly(fluorene-co-triphenylamine) for multilayer polymer light-emitting diodes. J Polym Sci A Polym Chem. 2011;49:352–60. https://doi.org/10.1002/pola.24432.

    Article  CAS  Google Scholar 

  17. Hung WY, Lin CY, Cheng TL, Yang SW, Chaskar A, Fan GL, et al. A new thermally crosslinkable hole injection material for OLEDs. Org Electron. 2012;13:2508–15. https://doi.org/10.1016/j.orgel.2012.06.023.

    Article  CAS  Google Scholar 

  18. Shurdha E, Miller HA, Johnson RE, Balaich GJ, Iacono ST. Synthesis and thermal properties of a new styryl-functionalized pentafulvene glassy carbon precursor. Tetrahedron. 2014;70:5142–7. https://doi.org/10.1016/j.tet.2014.05.109.

    Article  CAS  Google Scholar 

  19. Schneider HA. Glass transition behaviour of compatible polymer blends. Polymer. 1989;30:771–9. https://doi.org/10.1016/0032-3861(89)90172-9.

    Article  CAS  Google Scholar 

  20. Forrest JA, Dalnoki-Veress K. The glass transition in thin polymer films. Adv Colloid Interface Sci. 2001;94:167–96. https://doi.org/10.1016/S0001-8686(01)00060-4.

    Article  CAS  Google Scholar 

  21. Binder K, Baschnagel J, Paul W. Glass transition of polymer melts: test of theoretical concepts by computer simulation. Prog Polym Sci. 2003;28:115–72. https://doi.org/10.1016/S0079-6700(02)00030-8.

    Article  CAS  Google Scholar 

  22. Müller C. On the glass transition of polymer semiconductors and its impact on polymer solar cell stability. Chem Mat. 2015;27:2740–54. https://doi.org/10.1021/acs.chemmater.5b00024.

    Article  CAS  Google Scholar 

  23. Napolitano S, Glynos E, Tito NB. Glass transition of polymers in bulk, confined geometries, and near interfaces. Rep. Prog Phys. 2017;80:036602 https://doi.org/10.1088/1361-6633/aa5284.

    Article  CAS  PubMed  Google Scholar 

  24. Fukuhara T, Shibasaki Y, Ando S, Ueda M. Synthesis of thermosetting poly(phenylene ether) containing allyl groups. Polymer. 2004;45:843–7. https://doi.org/10.1016/j.polymer.2003.11.025.

    Article  CAS  Google Scholar 

  25. Miyanishi S, Tajima K, Hashimoto K. Morphological stabilization of polymer photovoltaic cells by using cross-linkable poly(3-(5-hexenyl)thiophene). Macromolecules. 2009;42:1610–8. https://doi.org/10.1021/ma802839a.

    Article  CAS  Google Scholar 

  26. Qiagedeer A, Yamagishi H, Hayashi S, Yamamoto Y. Polymer optical microcavity sensor for volatile organic compounds with distinct selectivity toward aromatic hydrocarbons. ACS Omega. 2021;6:21066–70. https://doi.org/10.1021/acsomega.1c02749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kushida S, Okada D, Sasaki F, Lin ZH, Huang JS, Yamamoto Y. Low-threshold whispering gallery mode lasing from self-assembled microspheres of single-sort conjugated polymers. Adv Opt Mater. 2017;5:1700123 https://doi.org/10.1002/adom.201700123.

    Article  CAS  Google Scholar 

  28. Landfester K, Montenegro R, Scherf U, Güntner R, Asawapirom U, Patil S. et al. Semiconducting polymer nanospheres in aqueous dispersion prepared by a miniemulsion process. Adv Mater. 2002;14:651–5. https://doi.org/10.1002/1521-4095(20020503)14:9<651::AID-ADMA651>3.0.CO;2-V.

    Article  CAS  Google Scholar 

  29. Yamamoto Y. Spherical resonators from π-conjugated polymers. Polym J. 2016;48:1045–50. https://doi.org/10.1038/pj.2016.81.

    Article  CAS  Google Scholar 

  30. Oraevsky AN. Whispering-gallery waves. Quantum Electron. 2002;32:377–400.

    Article  CAS  Google Scholar 

  31. Aikyo Y, Kushida S, Braam D, Kuwabara J, Kondo T, Kanbara T, et al. Enwrapping conjugated polymer microspheres with graphene oxide nanosheets. Chem Lett. 2016;45:1024–6. https://doi.org/10.1246/cl.160504.

    Article  CAS  Google Scholar 

  32. Franken LE, Wei Y, Chen J, Boekema EJ, Zhao D, Stuart MCA, et al. Solvent mixing to induce molecular motor aggregation into bowl-shaped particles: underlying mechanism, particle nature, and application to control motor behavior. J Am Chem Soc. 2018;140:7860–8. https://doi.org/10.1021/jacs.8b03045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li M, An X, Jiang M, Li S, Liu S, Chen Z, et al. “Cellulose spacer” strategy: anti-aggregation-caused quenching membrane for mercury ion detection and removal. ACS Sustain Chem Eng. 2019;7:15182–9. https://doi.org/10.1021/acssuschemeng.9b01928.

    Article  CAS  Google Scholar 

  34. Huang Y, Xing J, Gong Q, Chen LC, Liu G, Yao C, et al. Reducing aggregation caused quenching effect through co-assembly of PAH chromophores and molecular barriers. Nat Commun. 2019;10:169 https://doi.org/10.1038/s41467-018-08092-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wyman C, Sloan PP, Shirley P. Simple analytic approximations to the CIE XYZ color matching functions. J Comput Graph Tech.2013;2:1–11. http://jcgt.org/published/0002/02/01/.

    Google Scholar 

Download references

Acknowledgements

This work was supported by CREST (JPMJCR20T4) and ACT-X (JPMJAX201J) from the Japan Science and Technology Agency (JST), and by Scientific Research (A) (JP16H02081), and Young Scientist (JP22K14656) from the Japan Society for the Promotion of Science (JSPS), Ogasawara Foundation, Ministry of Science and Technology Taiwan (110-2221-E-007-006-MY3 and 110-2113-M-007-013-MY3).

Author information

Authors and Affiliations

Authors

Contributions

HY, MH and YY conceived the idea and designed the experiments; CL, C-HJ, M-CT and MH conducted the organic synthesis; YI and HY conducted the self-assembly; and HY, MH, and YY prepared the manuscript.

Corresponding authors

Correspondence to Masaki Horie or Yohei Yamamoto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ihara, Y., Yamagishi, H., Lin, C. et al. Hydrothermal crosslinking of poly(fluorenylamine) with styryl side chains to produce insoluble fluorescent microparticles. Polym J 55, 547–553 (2023). https://doi.org/10.1038/s41428-022-00679-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00679-z

Search

Quick links