Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Amphiphilic block copolymer surfactant-containing quaternized pyridinium salt segments for color dispersion

Abstract

Cationic block copolymers containing a quaternized pyridinium salt and hydrophobic acrylates were prepared, and their fundamental properties as ink dispersants were evaluated. Block copolymers containing methyl acrylate (MA), ethyl acrylate (EA), or butyl acrylate (BA) as hydrophobic segments successfully dispersed dye particles in aqueous media; however, polymers containing octyl acrylate (OA), hexyl acrylate (HA), cyclohexyl acrylate (CyHA), or phenoxyethyl acrylate (PhEA) did not exhibit good dispersibility. Color dispersions containing block copolymers consisting of 4-vinylpyridine (4VP) and BA (poly(BA-b-4VP)) exhibited the lowest viscosity among all polymers examined and maintained a stable dye dispersion. The results of this study suggest that the hydrophobic/hydrophilic balance, flexibility of the polymer chain, and degree of molecular interaction between the dye and hydrophobic segment of the polymer chain should be carefully examined and optimized for better performance. This study demonstrates the application potential of quaternized pyridinium cations in the field of dispersants and surfactants.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bates CM, Bates FS. 50th anniversary perspective: Block polymers-pure potential. Macromolecules. 2017;50:3–22.

    Article  CAS  Google Scholar 

  2. Fetsch C, Gaitzsch J, Messager L, Battaglia G, Luxenhofer R. Self-assembly of amphiphilic block copolypeptoids—micelles, worms and polymersomes. Sci Rep. 2016;6:33491.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wu D, Huang Y, Xu F, Mai Y, Yan D. Recent advances in the solution self-assembly of amphiphilic “rod-coil” copolymers. J Polym Sci Part A Polym Chem. 2017;55:1459–77.

    Article  CAS  Google Scholar 

  4. Nsib F, Ayed N, Chevalier Y. Selection of dispersants for the dispersion of C.I. pigment violet 23 in organic medium. Dye Pigment. 2007;74:133–40.

    Article  CAS  Google Scholar 

  5. Costa JRC, Correia C, Góis JR, Silva SMC, Antunes FE, Moniz J, et al. Efficient dispersion of TiO2 using tailor made poly(acrylic acid)—based block copolymers, and its incorporation in water based paint formulation. Prog Org Coat. 2017;104:34–42.

    Article  CAS  Google Scholar 

  6. Kim B, Jeong J, Mohanty AK, Lee T, Han S, Heo J, et al. Quaternized poly (poly(ethylene glycol)methyl ether methacrylate)-b-poly (2-(dimethylamino)ethyl methacrylate) as block copolymers by sequential monomer addition: Dispersion of copper phthalocyanine. React Funct Polym. 2017;120:147–52.

    Article  CAS  Google Scholar 

  7. Li J, Fan J, Cao R, Zhang Z, Du J, Peng X. Encapsulated dye/polymer nanoparticles prepared via miniemulsion polymerization for inkjet printing. ACS Omega. 2018;3:7380–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22:673–85.

    Article  CAS  PubMed  Google Scholar 

  9. Man Y, Li X, Li S, Yang Z, Lee YI, Liu HG. Effects of hydrophobic/hydrophilic blocks ratio on PS-b-PAA self-assembly in solutions, in emulsions, and at the interfaces. Colloids Surf A. 2019;580:123684.

    Article  Google Scholar 

  10. Iborra A, Díaz G, López D, Giussi JM, Azzaroni O. Copolymer based on lauryl methacrylate and poly(ethylene glycol) methyl ether methacrylate as amphiphilic macrosurfactant: Synthesis, characterization and their application as dispersing agent for carbon nanotubes. Eur Polym J. 2017;87:308–17.

    Article  CAS  Google Scholar 

  11. Dange C, Phan TNT, André V, Rieger J, Persello J, Foissy A. Adsorption mechanism and dispersion efficiency of three anionic additives [poly(acrylic acid), poly(styrene sulfonate) and HEDP] on zinc oxide. J Coll Inter Sci. 2007;315:107–15.

    Article  CAS  Google Scholar 

  12. Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS. Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). J Mater Chem. 2006;16:155–8.

    Article  CAS  Google Scholar 

  13. Shukla S, Bhattacharjee S, Weber AZ, Secanell M. Experimental and theoretical analysis of ink dispersion stability for polymer electrolyte fuel cell applications. J Electrochem Soc. 2017;164:F600–9.

    Article  CAS  Google Scholar 

  14. Bhavsar RA, Nehete KM. Rheological approach to select most suitable associative thickener for water-based polymer dispersions and paints. J Coat Technol Res. 2019;16:1089–98.

    Article  CAS  Google Scholar 

  15. Benchabane A, Bekkour K. Rheological properties of carboxymethyl cellulose (cmc) solutions. Colloid Polym Sci. 2008;286:1173–80.

    Article  CAS  Google Scholar 

  16. Kennemur JG. Poly(vinylpyridine) segments in block copolymers: synthesis, self-assembly, and versatility. Macromolecules. 2019;52:1354–70.

    Article  CAS  Google Scholar 

  17. Briones OX, Tapia RA, Campodónico PR, Urzúa M, Leiva Á, Contreras R, et al. Synthesis and characterization of poly (ionic liquid) derivatives of N-alkyl quaternized poly(4-vinylpyridine). React Funct Polym. 2018;124:64–71.

    Article  Google Scholar 

  18. Samantaray PK, Madras G, Bose S. Antibacterial and antibiofouling polymeric membranes through immobilization of pyridine derivative leading to ROS generation and loss in bacterial membrane integrity. ChemistrySelect. 2017;2:7965–74.

    Article  CAS  Google Scholar 

  19. Harjani JR, Singer RD, Garcia MT, Scammells PJ. Biodegradable pyridinium ionic liquids: design, synthesis and evaluation. Green Chem. 2009;11:83–90.

    Article  CAS  Google Scholar 

  20. Jeong JW, Park WI, Kim MJ, Ross CA, Jung YS. Highly tunable self-assembled nanostructures from a poly(2-vinylpyridine- b -dimethylsiloxane) block copolymer. Nano Lett. 2011;11:4095–101.

    Article  CAS  PubMed  Google Scholar 

  21. Shahruzzaman M, Takafuji M, Ihara H. Tuning of separation mode using pyridinium salt-branched ionic polymer-grafted silica as stationary phase in HPLC. Chem Lett. 2015;45:13–5.

    Article  Google Scholar 

  22. Wang Z, Liao S, Wang Y. Supramolecular polymer emulsifiers for one-step complex emulsions. Chin J Polym Sci. 2018;36:288–96.

    Article  CAS  Google Scholar 

  23. Huang X, Yang Y, Shi J, Ngo HT, Shen C, Du W, et al. High-internal-phase emulsion tailoring polymer amphiphilicity towards an efficient NIR-sensitive bacteria filter. Small. 2015;11:4876–83.

    Article  CAS  PubMed  Google Scholar 

  24. Miao H, Wang Y, Dong H, Chen D. Complexation induced by weak interaction between DNA and PEO-b-P4VP below the cmc of the polymer. Chin J Polym Sci. 2017;35:46–53.

    Article  CAS  Google Scholar 

  25. Badila M, Brochon C, Hébraud A, Hadziioannou G. Encapsulation of TiO2 in poly(4-vinyl pyridine)-based cationic microparticles for electrophoretic inks. Polymer. 2008;49:4529–33.

    Article  CAS  Google Scholar 

  26. Křenek R, Cimrová V, Stamm M. Incorporation of dyes into polystyrene- block -poly(4-vinylpyridine) nanotemplates. Macromol Symp. 2008;268:86–90.

    Article  Google Scholar 

  27. Duivenvoorde FL, Jansen K, Laven J, Linde R. Use of poly(2-vinylpyridine)-b-poly(ɛ-caprolactone) copolymers as pigment stabilizers in powder coatings. J Coat Technol. 2002;74:49–57.

    Article  CAS  Google Scholar 

  28. Shi Z, Zhang X, Yu Z, Yang F, Liu H, Xue R, et al. Facile synthesis of imidazolium-based block copolypeptides with excellent antimicrobial activity. Biomacromolecules. 2021;22:2373–81.

    Article  CAS  PubMed  Google Scholar 

  29. Pirrung FOH, Quednau PH, Auschra C. Wetting and dispersing agents. Chimia. 2002;56:170–6.

    Article  CAS  Google Scholar 

  30. Farrokhpay S, Morris GE, Fornasiero D, Self P. Influence of polymer functional group architecture on titania pigment dispersion. Colloids Surf A. 2005;253:183–91.

    Article  CAS  Google Scholar 

  31. Spinelli HJ. Polymeric dispersants in ink jet technology. Adv Mater. 1998;10:1215–8.

    Article  CAS  Google Scholar 

  32. Steiert N, Landfester K. Encapsulation of organic pigment particles via miniemulsion polymerization. Macromol Mater Eng. 2007;292:1111–25.

    Article  CAS  Google Scholar 

  33. Fu SH, Fang KJ. Preparation of styrene-maleic acid copolymers and its application in encapsulated pigment red 122 dispersion. J Appl Polym Sci. 2007;105:317–21.

    Article  CAS  Google Scholar 

  34. Nakamura M, Ikeda Y, Oguchi H, Yano T, Naito S Ink Set. U.S. Patent 9,718,978 B2 (August 1, 2017), assigned to Seiko Epson Corporation.

  35. Danilovtseva EN, Zelinskiy SN, Pal’shin VA, Kandasamy G, Krishnan UM, Annenkov VV. Poly(1-vinylimidazole) prospects in gene delivery. Chin J Polym Sci. 2019;37:637–45.

    Article  Google Scholar 

  36. Liu S, Sun YL, Chen CL, Xu H, Lei K, Lang MD. Preparation and properties of 4-vinylpyridine zwitterionic copolymer resin. J Funct Polym. 2018;31:553–60.

    CAS  Google Scholar 

  37. French RA, Jacobson AR, Kim B, Isley SL, Penn RL, Baveye PC. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environ Sci Technol. 2009;43:1354–9.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma R, Mahajan S, Mahajan RK. Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids Surf A. 2013;427:62–75.

    Article  CAS  Google Scholar 

  39. Huibers PDT, Lobanov VS, Katritzky AR, Shah DO, Karelson M. Prediction of critical micelle concentration using a quantitative structure−property relationship approach. 1. Nonion Surfact Langmuir. 1996;12:1462–70.

    Article  CAS  Google Scholar 

  40. Phenrat T, Saleh N, Sirk K, Kim HJ, Tilton RD, Lowry GV. Stabilization of aqueous nanoscale zerovalent iron dispersions by anionic polyelectrolytes: adsorbed anionic polyelectrolyte layer properties and their effect on aggregation and sedimentation. J Nanopart Res. 2008;10:795–814.

    Article  CAS  Google Scholar 

  41. Sehgal A, Lalatonne Y, Berret JF, Morvan M. Precipitation−redispersion of cerium oxide nanoparticles with poly(acrylic acid): toward stable dispersions. Langmuir 2005;21:9359–64.

    Article  CAS  PubMed  Google Scholar 

  42. Lu G, Duan YY, Wang XD. Surface tension, viscosity, and rheology of water-based nanofluids: a microscopic interpretation on the molecular level. J Nanopart Res. 2014;16:2564.

    Article  Google Scholar 

  43. Yang Y, Cai Z, Huang Z, Tang X, Zhang X. Antimicrobial cationic polymers:from structural design to functional control. Polym J. 2018;50:33–44.

    Article  CAS  Google Scholar 

  44. Lam SJ, Wong EHH, Boyer C, Qiao GG. Antimicrobial polymeric nanoparticles. Prog Polym Sci. 2018;76:40–64.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author (TO) thanks Kana Ohira (Seiko Epson), and Chikako Fujita (Seiko Epson) for the GPC measurements and NMR measurements, respectively. The authors also thank Koichi Terao (Seiko Epson) and Hiroshi Kiguchi (Seiko Epson) for helpful discussions and encouragement, respectively. The authors would like to thank Enago (www.enago.jp) and American Journal Experts (www.aje.com) for the English language review.

Author information

Authors and Affiliations

Authors

Contributions

TO and HI designed and performed the experiments and analyzed the results. All the authors discussed the experimental results and commented on the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Toshihiro Ohtake.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohtake, T., Ito, H. & Toyoda, N. Amphiphilic block copolymer surfactant-containing quaternized pyridinium salt segments for color dispersion. Polym J 54, 1203–1211 (2022). https://doi.org/10.1038/s41428-022-00673-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00673-5

Search

Quick links