Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Focus Review
  • Published:

Development of reverse osmosis membranes by incorporating polyhedral oligomeric silsesquioxanes (POSSs)

Abstract

Reverse osmosis (RO) membranes composed of polyamides and cellulose acetates are used as separation layers in pure-water production. However, improving the separation performance and antifouling properties of RO membranes is necessary. The term ‘fouling’ describes the adhesion of organic substances and bacteria to membrane surfaces. To resolve these problems, composite membranes comprising organic polymers and inorganic nanofillers have been developed. Recently, polyhedral oligomeric silsesquioxanes (POSSs), which are cage-shaped, subnanosized molecules exhibiting organic–inorganic hybrid structures, have been studied as nanofillers or building blocks for RO membranes. These reports, along with structural analyses and simulation studies, revealed that the incorporation of POSS components into RO membranes improved their water flux, NaCl rejection, chemical durability, and antifouling properties. This review describes recent research on the improvement of RO membranes by incorporating POSS components, including our previous related studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abe Y, Gunji T. Oligo- and polysiloxanes. Prog Polym Sci. 2004;29:149–82.

    Article  CAS  Google Scholar 

  2. Zhao J, Fu Y, Liu S. Polyhedral oligomeric silsesquioxane (POSS)-modified thermoplastic and thermosetting nanocomposites: a review. Polym Polym Compos. 2008;16:483–500.

    CAS  Google Scholar 

  3. Wu J, Mather PT. POSS polymers: physical properties and biomaterials applications. Polym Rev. 2009;49:25–63.

    Article  CAS  Google Scholar 

  4. Kuo S-W, Chang F-C. POSS related polymer nanocomposites. Prog Polym Sci. 2011;36:1649–96.

    Article  CAS  Google Scholar 

  5. Tokunaga T, Shoiriki M, Mizumo T, Kaneko Y. Preparation of low-crystalline POSS containing two types of alkylammonium groups and its optically transparent film. J Mater Chem C 2014;2:2496–501.

    Article  CAS  Google Scholar 

  6. Chen X, Dumée LF. Polyhedral oligomeric silsesquioxane (POSS) nano-composite separation membranes − a review. Adv Eng Mater. 2019;21:1800667.

    Article  Google Scholar 

  7. Markovic E, Clarke S, Matisons J, Simon GP. Synthesis of POSS−methyl methacrylate-based cross-linked hybrid materials. Macromolecules 2008;41:1685–92.

    Article  CAS  Google Scholar 

  8. Zhang C, Guang S, Zhu X, Xu H, Liu X, Jiang M. Mechanism of dielectric constant variation of POSS-based organic−inorganic molecular hybrids. J Phys Chem C. 2010;114:22455–61.

    Article  CAS  Google Scholar 

  9. Tanaka K, Chujo Y. Advanced functional materials based on polyhedral oligomeric silsesquioxane (POSS). J Mater Chem. 2012;22:1733–46.

    Article  CAS  Google Scholar 

  10. Shioda T, Gunji T, Abe N, Abe Y. Preparation and properties of polyhedral oligomeric silsesquioxane polymers. Appl Organomet Chem. 2011;25:661–4.

    CAS  Google Scholar 

  11. El-Ghaffar MAA, Tieama HA. A Review of membranes classifications, configurations, surface modifications, characteristics and its applications in water purification. Chem Biomol Eng. 2017;2:57–82.

    Google Scholar 

  12. Elimelech M, Phillip WA. The future of seawater desalination: energy, technology, and the environment. Science. 2011;333:712–7.

    Article  CAS  PubMed  Google Scholar 

  13. Khorshidi B, Biswas I, Ghosh T, Thundat T, Sadrzadeh M. Robust fabrication of thin film polyamide-TiO2 nanocomposite membranes with enhanced thermal stability and anti-biofouling propensity. Sci Rep. 2018;8:784.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shen H, Wang S, Xu H, Zhou Y, Gao C. Preparation of polyamide thin film nanocomposite membranes containing silica nanoparticles via an in-situ polymerization of SiCl4 in organic solution. J Membr Sci. 2018;565:145–56.

    Article  CAS  Google Scholar 

  15. Ortiz-Medina J, Inukai S, Araki T, Morelos-Gomez A, Cruz-Silva R, Takeuchi K, et al. Robust water desalination membranes against degradation using high loads of carbon nanotubes. Sci Rep. 2018;8:2748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Y, Tan J, Choi W, Hsu J-H, Han DS, Han A, et al. Influence of nanoparticle inclusions on the performance of reverse osmosis membranes. Environ Sci Water Res Technol. 2018;4:411–20.

    Article  CAS  Google Scholar 

  17. Duan J, Pan Y, Pacheco F, Litwiller E, Lai Z, Pinnau I. High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. J Membr Sci. 2015;476:303–10.

    Article  CAS  Google Scholar 

  18. Fathizadeh M, Aroujalian A, Raisi A. Effect of added NaX nano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J Membr Sci. 2011;375:88–95.

    Article  CAS  Google Scholar 

  19. Moon JH, Katha AR, Pandian S, Kolake SM, Han S. Polyamide–POSS hybrid membranes for seawater desalination: Effect of POSS inclusion on membrane properties. J Membr Sci. 2014;461:89–95.

    Article  CAS  Google Scholar 

  20. Na Y-H, Jose S, Sooriyakumaran R, Jose S, Vora A, Jose S, et al. THIN FILM COMPOSITE MEMBRANES. US Patent 8, 895, 104 B2.

  21. Duan J, Litwiller E, Pinnau I. Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes. J Membr Sci. 2015;473:157–64.

    Article  CAS  Google Scholar 

  22. Liu Y, Liu C, Fu X, Lin O, Wang Z, Wang C, et al. Armor polyamide reverse osmosis membrane with POSS ‘armors’ through two-step interfacial polymerization for high anti-chlorine and anti-bacteria performance. J Membr Sci. 2019;586:211–21.

    Article  CAS  Google Scholar 

  23. Guo B-Y, Li F, Japip S, Yang L, Shang C, Zhang S. Double cross-linked POSS-containing thin film nanocomposite hollow fiber membranes for brackish water desalination via reverse osmosis. Ind Eng Chem Res. 2020;59:22272–80.

    Article  CAS  Google Scholar 

  24. Yamamoto K, Koge S, Gunji T, Kanezashi M, Tsuru T, Ohshita J. Preparation of POSS-derived robust RO membranes for water desalination. Desalination 2017;404:322–7.

    Article  CAS  Google Scholar 

  25. Yamamoto K, Amaike Y, Tani M, Saito I, Kozuma T, Kaneko Y, et al. Bridged organosilica membranes incorporating carboxyl-functionalized cage silsesquioxanes for water desalination. J Sol-Gel Sci Technol. 2022;101:315–22.

    Article  CAS  Google Scholar 

  26. Jiang S, Li Y, Ladewig BP. A review of reverse osmosis membrane fouling and control strategies. Sci Total Environ. 2017;595:567–83.

    Article  CAS  PubMed  Google Scholar 

  27. Xu R, Kanezashi M, Yoshioka T, Okuda T, Ohshita J, Tsuru T. Tailoring the affinity of organosilica membranes by introducing polarizable ethenylene bridges and aqueous ozone modification. ACS Appl Mater Interfaces. 2013;5:6147–54.

    Article  CAS  PubMed  Google Scholar 

  28. Xu R, Ibrahim SM, Kanezashi M, Yoshioka T, Ito K, Ohshita J, et al. New insights into the microstructure-separation properties of organosilica membranes with ethane, ethylene, and acetylene bridges. ACS Appl Mater Interfaces. 2014;6:9357–64.

    Article  CAS  PubMed  Google Scholar 

  29. Yamamoto K, Ohshita J, Mizumo T, Kanezashi M, Tsuru T. Synthesis of organically bridged trialkoxysilanes bearing acetoxymethyl groups and applications to reverse osmosis membranes: Acetoxymethyl-containing bridged silica membrane. Appl Organomet Chem. 2017;31:e3580.

    Article  Google Scholar 

  30. Yamamoto K, Ohshita J. Bridged polysilsesquioxane membranes for water desalination. Polym J. 2019;51:1103–16.

    Article  CAS  Google Scholar 

  31. Yamamoto K, Saito I, Amaike Y, Nakaya T, Ohshita J, Gunji T. Preparation and water desalination properties of bridged polysilsesquioxane membranes with divinylbenzene and divinylpyridine units. Polym J. 2020;52:1367–74.

    Article  CAS  Google Scholar 

  32. Ibrahim SM, Nagasawa H, Kanezashi M, Tsuru T. Chemical-free cleaning of fouled reverse osmosis (RO) membranes derived from bis(triethoxysilyl)ethane (BTESE). J Membr Sci. 2020;601:117919.

    Article  CAS  Google Scholar 

  33. Zhang D, Kanezashi M, Tsuru T, Yamamoto K, Yakuwa R, Gunji T, et al. Preparation of polysilsesquioxane reverse osmosis membranes for water desalination from tris[(ethoxysilyl)alkyl]amines by sol–gel process and interfacial polymerization. Appl Organomet Chem. 2021;36:e6374.

    Google Scholar 

  34. Zhang D, Kanezashi M, Tsuru T, Yamamoto K, Gunji T, Adachi Y. et al. Development of PSQ-RO membranes with high waterpermeability by copolymerization of bis[3-(triethoxysilyl)propyl]amine andtriethoxy(3-glycidyloxypropyl)silane. J Membr Sci.2022;644:120162

    Article  CAS  Google Scholar 

  35. Zhang D, Kanezashi M, Tsuru T, Yamamoto K, Gunji T, Adachi Y, et al. Development of highly water-permeable robust PSQ-based RO membranes by introducing hydroxyethylurea-based hydrophilic water channels. ACS Appl Mater Interfaces. 2022;14:21426–21435.

    Article  CAS  PubMed  Google Scholar 

  36. You X, Ma T, Su Y, Wu H, Wu M, Cai H, et al. Enhancing the permeation flux and anti-fouling performance of polyamide nanofiltration membrane by incorporation of PEG-POSS nanoparticles. J Membr Sci. 2017;540:454–63.

    Article  CAS  Google Scholar 

  37. Bandehali S, Moghadassi A, Parvizian F, Hosseini S. A new type of [PEI-glycidyl POSS] nanofiltration membrane with enhanced separation and antifouling performance. Korean J Chem Eng. 2019;36:1657–68.

    Article  CAS  Google Scholar 

  38. Bandehali S, Parvizian F, Moghadassi A, Shen J, Hosseini SM. Improvement in separation performance of PEI-based nanofiltration membranes by using L-cysteine functionalized POSS-TiO2 composite nanoparticles for removal of heavy metal ion. Korean J Chem Eng. 2020;37:1552–64.

    Article  CAS  Google Scholar 

  39. Sheng A, Wang H, Jiang H, Zhao Y, Li H, Jia H, et al. Structurally ordered nanofiltration membranes prepared by spatially anchoring interfacial polymerization for highly efficient separation properties. Korean J Chem Eng. 2021;38:1956–69.

    Article  CAS  Google Scholar 

  40. Worthley CH, Constantopoulos KT, Ginic-Markovic M, Markovic E, Clarke S. A study into the effect of POSS nanoparticles on cellulose acetate membranes. J Membr Sci. 2013;431:62–71.

    Article  CAS  Google Scholar 

  41. Sun J, Wu L, Hu F. Preparation and characterization of a PVDF/EG-POSS hybrid ultrafiltration membrane for anti-fouling improvement. RSC Adv. 2015;5:40753–63.

    Article  CAS  Google Scholar 

  42. Sierke J, Ellis AV. Cross-linking of dehydrofluorinated PVDF membranes with thiol modified polyhedral oligomeric silsesquioxane (POSS) and pure water flux analysis. J Membr Sci. 2019;581:362–72.

    Article  CAS  Google Scholar 

  43. Fu F-J, Zhang S, Sun S-P, Wang K-Y, Chung T-S. POSS-containing delamination-free dual-layer hollow fiber membranes for forward osmosis and osmotic power generation. J Membr Sci. 2013;443:144–55.

    Article  CAS  Google Scholar 

  44. Shamsa A, Mirbagheri SM, Jahani Y. The synergistic effect of graphene oxide and POSS in mixed matrix membranes for desalination. Desalination. 2019;472:114131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuki Yamamoto.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamoto, K. Development of reverse osmosis membranes by incorporating polyhedral oligomeric silsesquioxanes (POSSs). Polym J 54, 1153–1160 (2022). https://doi.org/10.1038/s41428-022-00668-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00668-2

Search

Quick links