Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene

Abstract

Actuators, as used in materials science, can improve soft robotics. Diverse stimuli have been utilized for actuation. Among the various stimuli, light has advantages for remote and local control. Mechanical properties are important factors to consider when evaluating the practical application of such materials in soft robotics. However, simultaneous studies on mechanical and actuating properties have rarely been conducted. We focus on 6,6-Nylon and supramolecular chemistry, particularly the chemistry between γ-cyclodextrin and azobenzene, to address this issue. Movable cross-links formed by cyclodextrin and azobenzene increase the mechanical toughness of this nylon-based material. The supramolecular material exhibits reversible photoresponsiveness in terms of both mechanical and actuating properties with mechanoisomerization. With predeformation, the actuation speed and work efficiency of the supramolecular material are drastically increased upon UV irradiation. We expect that supramolecular chemistry will contribute to material innovation for soft robotics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li G, Chen X, Zhou F, Liang Y, Xiao Y, Cao X, et al. Self-powered soft robot in the Mariana Trench. Nature 2021;591:66–71.

    Article  CAS  PubMed  Google Scholar 

  2. Drotman D, Jadhav S, Sharp D, Chan C, Tolley MT. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci Robot 2021;6:eaay2627.

    Article  PubMed  Google Scholar 

  3. Rothemund P, Kim Y, Heisser RH, Zhao X, Shepherd RF, Keplinger C. Shaping the future of robotics through materials innovation. Nat Mater. 2021;20:1582–7.

    Article  CAS  PubMed  Google Scholar 

  4. Kim J, Kim JW, Kim HC, Zhai L, Ko HU, Muthoka RM. Review of Soft Actuator Materials. Int J Precis Eng Manuf. 2019;20:2221–41.

    Article  Google Scholar 

  5. Ma M, Guo L, Anderson DG, Langer R. Bio-inspired polymer composite actuator and generator driven by water gradients. Science. 2013;339:186–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arazoe H, Miyajima D, Akaike K, Araoka F, Sato E, Hikima T, et al. An autonomous actuator driven by fluctuations in ambient humidity. Nat Mater. 2016;15:1084–9.

    Article  CAS  PubMed  Google Scholar 

  7. Ware TH, McConney ME, Wie JJ, Tondiglia VP, White TJ. Voxelated liquid crystal elastomers. Science. 2015;347:982–4.

    Article  CAS  PubMed  Google Scholar 

  8. Acome E, Mitchell SK, Morrissey TG, Emmett MB, Benjamin C, King M, et al. Hydraulically amplified self-healing electrostatic actuators with muscle-like performance. Science. 2018;359:61–5.

    Article  CAS  PubMed  Google Scholar 

  9. Kanik M, Orguc S, Varnavides G, Kim J, Benavides T, Gonzalez D, et al. Strain-programmable fiber-based artificial muscle. Science. 2019;365:145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim HJ, Paquin L, Barney CW, So S, Chen B, Suo Z, et al. Low-Voltage Reversible Electroadhesion of Ionoelastomer Junctions. Adv Mater. 2020;32:2000600.

    Article  CAS  Google Scholar 

  11. Burnworth M, Tang L, Kumpfer JR, Duncan AJ, Beyer FL, Fiore GL, et al. Optically healable supramolecular polymers. Nature. 2011;472:334–7.

    Article  CAS  PubMed  Google Scholar 

  12. Hartley GS. The Cis-form of Azobenzene. Nature. 1937;140:281.

    Article  CAS  Google Scholar 

  13. Bandara HMD, Burdette SC. Photoisomerization in different classes of azobenzene. Chem Soc Rev. 2012;41:1809–25.

    Article  CAS  PubMed  Google Scholar 

  14. Soberats B, Uchida E, Yoshio M, Kagimoto J, Ohno H, Kato T. Macroscopic photocontrol of ion-transporting pathways of a nanostructured imidazolium-based photoresponsive liquid crystal. J Am Chem Soc. 2014;136:9552–5.

    Article  CAS  PubMed  Google Scholar 

  15. Crespi S, Simeth NA, König B. Heteroaryl azo dyes as molecular photoswitches. Nat Rev Chem. 2019;3:133–46.

    Article  CAS  Google Scholar 

  16. Hada M, Yamaguchi D, Ishikawa T, Sawa T, Tsuruta K, Ishikawa K, et al. ya, Hayashi, Y., Kato, T. Ultrafast isomerization-induced cooperative motions to higher molecular orientation in smectic liquid-crystalline azobenzene molecules. Nat Commun. 2019;10:4159.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ciamician G, Silber P. Chemische Lichtwirkungen. Ber der Dtsch Chem Ges. 1902;35:4128–31.

    Article  CAS  Google Scholar 

  18. Trenor SR, Shultz AR, Love BJ, Long TE. Coumarins in polymers: From light harvesting to photo-cross-linkable tissue scaffolds. Chem Rev. 2004;104:3059–77.

    Article  CAS  PubMed  Google Scholar 

  19. Chandross EA. Photolytic Dissociation of Dianthracene. J Chem Phys. 1965;43:4175–6.

    Article  CAS  Google Scholar 

  20. Bouas-Laurent H, Castellan A, Desvergne JP, Lapouyade R. Photodimerization of anthracenes in fluid solution: Structural aspects. Chem Soc Rev. 2000;29:43–55.

    Article  CAS  Google Scholar 

  21. Yoshizawa M, Catti L. Bent Anthracene Dimers as Versatile Building Blocks for Supramolecular Capsules. Acc Chem Res. 2019;52:2392–404.

    Article  CAS  PubMed  Google Scholar 

  22. Carothers WH, Berchet GJ. Studies on polymerization and ring formation. VIII. amides from ϵ-aminocaproic acid. J Am Chem Soc. 1930;52:5289–91.

    Article  CAS  Google Scholar 

  23. Haines CS, Li N, Spinks GM, Aliev AE, Di J, Baughman RH. New twist on artificial muscles. Proc Natl Acad Sci USA. 2016;113:11709–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mirvakili SM, Hunter IW. Multidirectional Artificial Muscles from Nylon. Adv Mater. 2017;29:1604734.

    Article  Google Scholar 

  25. Kim K, Cho KH, Jung HS, Yang SY, Kim Y, Park JH, et al. Double Helix Twisted and Coiled Soft Actuator from Spandex and Nylon. Adv Eng Mater. 2018;20:1800536.

    Article  Google Scholar 

  26. Kim H, Moon JH, Mun TJ, Park TG, Spinks GM, Wallace GG, et al. Thermally Responsive Torsional and Tensile Fiber Actuator Based on Graphene Oxide. ACS Appl Mater Interfaces. 2018;10:32760–4.

    Article  CAS  PubMed  Google Scholar 

  27. Wu L, Jung De Andrade M, Saharan LK, Rome RS, Baughman RH, Tadesse Y. Compact and low-cost humanoid hand powered by nylon artificial muscles. Bioinspiration Biomim. 2017;12:026004.

    Article  Google Scholar 

  28. Feringa BL. The Art of Building Small: From Molecular Switches to Motors (Nobel Lecture). Angew Chem Int Ed. 2017;56:11060–78.

    Article  CAS  Google Scholar 

  29. Sauvage JP. From Chemical Topology to Molecular Machines (Nobel Lecture). Angew Chem Int Ed. 2017;56:11080–93.

    Article  CAS  Google Scholar 

  30. Stoddart JF. Mechanically Interlocked Molecules (MIMs)—Molecular Shuttles, Switches, and Machines (Nobel Lecture). Angew Chem Int Ed. 2017;56:11094–125.

    Article  CAS  Google Scholar 

  31. Dattler D, Fuks G, Heiser J, Moulin E, Perrot A, Yao X, et al. Design of Collective Motions from Synthetic Molecular Switches, Rotors, and Motors. Chem Rev. 2020;120:310–433.

    Article  CAS  PubMed  Google Scholar 

  32. Rekharsky MV, Inoue Y. Complexation thermodynamics of cyclodextrins. Chem Rev. 1998;98:1875–917.

    Article  CAS  PubMed  Google Scholar 

  33. Schmidt BVKJ, Barner-Kowollik C. Dynamic Macromolecular Material Design—The Versatility of Cyclodextrin-Based Host–Guest Chemistry. Angew Chem Int Ed. 2017;56:8350–69.

    Article  CAS  Google Scholar 

  34. Nakahata M, Takashima Y, Harada A. Highly Flexible, Tough, and Self-Healing Supramolecular Polymeric Materials Using Host-Guest Interaction. Macromol Rapid Commun. 2016;37:86–92.

    Article  CAS  PubMed  Google Scholar 

  35. Park J, Murayama S, Osaki M, Yamaguchi H, Harada A, Matsuba G, et al. Extremely Rapid Self-Healable and Recyclable Supramolecular Materials through Planetary Ball Milling and Host–Guest Interactions. Adv Mater. 2020;32:2002008.

    Article  CAS  Google Scholar 

  36. Harada A, Takashima Y, Nakahata M. Supramolecular Polymeric Materials via Cyclodextrin–Guest Interactions. Acc Chem Res. 2014;47:2128–40.

    Article  CAS  PubMed  Google Scholar 

  37. Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Photoswitchable gel assembly based on molecular recognition. Nat Commun. 2012;3:603.

    Article  PubMed  Google Scholar 

  38. Takashima Y, Hatanaka S, Otsubo M, Nakahata M, Kakuta T, Hashidzume A, et al. Expansion-contraction of photoresponsive artificial muscle regulated by host-guest interactions. Nat Commun. 2012;3:1270.

    Article  PubMed  Google Scholar 

  39. Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A. Photoswitchable supramolecular hydrogels formed by cyclodextrins and azobenzene polymers. Angew Chem Int Ed. 2010;49:7461–4.

    Article  CAS  Google Scholar 

  40. Iwaso K, Takashima Y, Harada A. Fast response dry-type artificial molecular muscles with [c2]daisy chains. Nat Chem. 2016;8:625–32.

    Article  CAS  PubMed  Google Scholar 

  41. Takashima Y, Hayashi Y, Osaki M, Kaneko F, Yamaguchi H, Harada A. A Photoresponsive Polymeric Actuator Topologically Cross-Linked by Movable Units Based on a [2]Rotaxane. Macromolecules. 2018;51:4688–93.

    Article  CAS  Google Scholar 

  42. Ikejiri S, Takashima Y, Osaki M, Yamaguchi H, Harada A. Solvent-Free Photoresponsive Artificial Muscles Rapidly Driven by Molecular Machines. J Am Chem Soc. 2018;140:17308–15.

    Article  CAS  PubMed  Google Scholar 

  43. Osaki M, Ito K, Ikemoto Y, Yamaguchi H, Chujo Y, Harada A, et al. Photoresponsive polymeric actuator cross-linked by an 8-armed polyhedral oligomeric silsesquioxane. Eur Polym J. 2020;134:109806.

    Article  CAS  Google Scholar 

  44. Okumura Y, Ito K. The polyrotaxane gel: A topological gel by figure-of-eight cross-links. Adv Mater. 2001;13:485–7.

    Article  CAS  Google Scholar 

  45. Ikura R, Park J, Osaki M, Yamaguchi H, Harada A, Takashima Y. Supramolecular Elastomers with Movable Cross-Linkers Showing High Fracture Energy Based on Stress Dispersion. Macromolecules. 2019;52:6953–62.

    Article  CAS  Google Scholar 

  46. Ikura R, Ikemoto Y, Osaki M, Yamaguchi H, Harada A, Takashima Y. Preparation of hydrophilic polymeric materials with movable cross-linkers and their mechanical property. Polymer. 2020;196:122465.

    Article  CAS  Google Scholar 

  47. Liu C, Morimoto N, Jiang L, Kawahara S, Noritomi T, Yokoyama H, et al. Tough hydrogels with rapid self-reinforcement. Science. 2021;372:1078–81.

    Article  CAS  PubMed  Google Scholar 

  48. Harada A, Li J, Kamachi M. Double-stranded inclusion complexes of cyclodextrin threaded on poly(ethylene glycol). Nature. 1994;370:126–8.

    Article  CAS  Google Scholar 

  49. Shimpuku C, Ozawa R, Sasaki A, Sato F, Hashimoto T, Yamauchi A, et al. Selective glucose recognition by boronic acid azoprobe/γ-cyclodextrin complexes in water. Chem Commun. 2009;1709–11.

  50. Morgan PW, Kwolek SL. The nylon rope trick: Demonstration of condensation polymerization. J Chem Educ. 1959;36:182–4.

    Article  Google Scholar 

  51. Szymański W, Beierle JM, Kistemaker HAV, Velema WA, Feringa BL. Reversible photocontrol of biological systems by the incorporation of molecular photoswitches. Chem Rev. 2013;113:6114–78.

    Article  PubMed  Google Scholar 

  52. Ishi-I T, Shinkai S. Dye-based organogels: Stimuli-Responsive Soft Materials Based on One-Dimensional Self-Assembling Aromatic Dyes. Top Curr Chem. 2005;258:119–60.

    Article  CAS  Google Scholar 

  53. Shin J, Sung J, Kang M, Xie X, Lee B, Lee KM, et al. Light-triggered thermal conductivity switching in azobenzene polymers. Proc Natl Acad Sci USA. 2019;116:5973–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gelebart AH, Jan Mulder D, Varga M, Konya A, Vantomme G, Meijer EW, et al. Making waves in a photoactive polymer film. Nature. 2017;546:632–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Surampudi SK, Patel HR, Nagarjuna G, Venkataraman D. Mechano-isomerization of azobenzene. Chem Commun. 2013;49:7519–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by a grant for Scientific Research in an Innovative Area (JP19H05721) from MEXT, Japan. We also thank the Iketani Science and Technology Foundation (0341026-A), the Kao Foundation for Arts and Sciences, and the NAGASE Science Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshinori Takashima.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, J., Tamura, H., Yamaguchi, H. et al. Supramolecular nylon-based actuators with a high work efficiency based on host–guest complexation and the mechanoisomerization of azobenzene. Polym J 54, 1213–1223 (2022). https://doi.org/10.1038/s41428-022-00666-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00666-4

This article is cited by

Search

Quick links