Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–π interactions

Abstract

Polyion complex (PIC) micelles were fabricated by directly mixing aqueous solutions of oppositely charged diblock copolymers, poly(2-(methacryloyloxy)ethylphosphorylcholine)-block-poly(vinylbenzyl trimethylammonium chloride) (PMPC-b-PVBTAC; P91V100) and PMPC-block-poly(sodium p-styrenesulfonate) (PMPC-b-PNaSS; P91N100). Cationic and anionic diblock copolymers were synthesized via controlled/living radical polymerization using the poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC) macrochain transfer agent. The subscript number represents the degree of polymerization (DP) of each block. A pair of oppositely charged diblock copolymers was mixed in an aqueous medium to prepare the PIC micelle using electrostatic, hydrophobic, and π–π interactions. The PIC micelles attained the maximum size and aggregation number when the charges of the cationic and anionic blocks were neutralized. The spherical core-shell micelle structure of the PIC micelle was confirmed. Generally, upon the addition of salt to the PIC micelle aqueous solution, the micelles dissociated because of the screening effect. However, the P91V100/P91N100 PIC micelle was stable against NaCl because the PVBTAC/PNaSS core of the PIC micelle was formed by electrostatic, hydrophobic, and π–π interactions. The P91V100/P91N100 PIC micelle can encapsulate charged and hydrophobic guest molecules.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Glagoleva AA, Larin DE, Vasilevskaya VV. Unusual structures of interpolyelectrolyte complexes: vesicles and perforated vesicles. Polymers. 2020;12:871–94.

    Article  CAS  Google Scholar 

  2. Ohno S, Ishihara K, Yusa S. Formation of polyion complex (PIC) micelles and vesicles with anionic pH-responsive unimer micelles and cationic diblock copolymers in water. Langmuir. 2016;32:3945–53.

    Article  CAS  Google Scholar 

  3. Yusa S, Yokoyama Y, Morishima Y. Synthesis of oppositely charged block copolymers of polyethylene glycol via reversible addition-fragmentation chain transfer radical polymerization and characterization of their polyion complex micelles in water. Macromolecules. 2009;42:376–83.

    Article  CAS  Google Scholar 

  4. Harada A, Kataoka K. Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block copolymers with poly(ethylene glycol) segments. Macromolecules. 1995;28:5294–9.

    Article  CAS  Google Scholar 

  5. Yu Q, Ding Y, Cao H, Lu X, Cai Y. Use of polyion complexation for polymerization-induced self-assembly in water under visible light irradiation at 25 °C. ACS Macro Lett. 2015;4:1293–6.

    Article  CAS  Google Scholar 

  6. Takahashi R, Sato T, Terao K, Yusa S. Reversible vesicle-spherical micelle transition in a polyion complex micellar system induced by changing the mixing ratio of copolymer components. Macromolecules. 2016;49:3091–9.

    Article  CAS  Google Scholar 

  7. Takahashi R, Sato T, Terao K, Yusa S. Intermolecular interactions and self-assembly in aqueous solution of a mixture of anionic-neutral and cationic-neutral block copolymers. Macromolecules. 2015;48:7222–9.

    Article  CAS  Google Scholar 

  8. Nguyen VTA, De Pauw-Gillet MC, Sandre O, Gauthier M. Biocompatible polyion complex micelles synthesized from arborescent polymers. Langmuir. 2016;32:13482–92.

    Article  CAS  Google Scholar 

  9. Wu H, Ting JM, Weiss TM, Tirrell MV. Interparticle interactions in dilute solutions of polyelectrolyte complex micelles. ACS Macro Lett. 2019;8:819–25.

    Article  CAS  Google Scholar 

  10. De Santis S, Diana Ladogana RD, Diociaiuti M, Masci G. Pegylated and thermosensitive polyion complex micelles by self-assembly of two oppositely and permanently charged diblock copolymers. Macromolecules. 2010;43:1992–2001.

    Article  Google Scholar 

  11. Nakai K, Nishiuchi M, Inoue M, Ishihara K, Sanada Y, Sakurai K, et al. Preparation and characterization of polyion complex micelles with phosphobetaine shells. Langmuir. 2013;29:9651–61.

    Article  CAS  Google Scholar 

  12. Nakai K, Ishihara K, Kappl M, Fujii S, Nakamura Y, Yusa S. Polyion complex vesicles with solvated phosphobetaine shells formed from oppositely charged diblock copolymers. Polymers. 2017;9:49.

    Article  Google Scholar 

  13. Dobrynin AV, Colby RH, Rubinstein M. Scaling theory of polyelectrolyte solutions. Macromolecules. 1995;28:1859–71.

    Article  CAS  Google Scholar 

  14. Insua I, Wilkinson A, Fernandez-Trillo F. Polyion complex (PIC) particles: Preparation and biomedical applications. Eur Polym J. 2016;81:198–215.

    Article  CAS  Google Scholar 

  15. Chen H, Xiao L, Anraku Y, Mi P, Liu X, Cabral H, et al. Polyion complex vesicles for photoinduced intracellular delivery of amphiphilic photosensitizer. J Am Chem Soc. 2014;136:157–63.

    Article  CAS  Google Scholar 

  16. Jang WD, Nakagishi Y, Nishiyama N, Kawauchi S, Morimoto Y, Kikuchi M, et al. Polyion complex micelles for photodynamic therapy: Incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release. 2006;113:73–9.

    Article  CAS  Google Scholar 

  17. Harada A, Kataoka K. Pronounced activity of enzymes through the incorporation into the core of polyion complex micelles made from charged block copolymers. J Control Release. 2001;72:85–91.

    Article  CAS  Google Scholar 

  18. Kim HJ, Kim A, Miyata K, Kataoka K. Recent progress in development of siRNA delivery vehicles for cancer therapy. Adv Drug Deliv Rev. 2016;104:61–77.

    Article  CAS  Google Scholar 

  19. Li J, Chen Q, Zha Z, Li H, Toh K, Dirisala A, et al. Ternary polyplex micelles with PEG shells and intermediate barrier to complexed DNA cores for efficient systemic gene delivery. J Control Release. 2015;209:77–87.

    Article  CAS  Google Scholar 

  20. Hayashi K, Chaya H, Fukushima S, Watanabe S, Takemoto H, Osada K, et al. Influence of RNA strand rigidity on polyion complex formation with block catiomers. Macromol Rapid Commun. 2016;37:486–93.

    Article  CAS  Google Scholar 

  21. Wittenberg BA, Wittenberg JB, Caldwell PR. Role of myoglobin in the oxygen supply to red skeletal muscle. J Biol Chem. 1975;250:9038–43.

    Article  CAS  Google Scholar 

  22. Kishimura A, Koide A, Osada K, Yamasaki Y, Kataoka K. Encapsulation of myoglobin in PEGylated polyion complex vesicles made from a pair of oppositely charged block ionomers: a physiologically available oxygen carrier. Angew Chem Int Ed Engl. 2007;119:6197–200.

    Article  Google Scholar 

  23. Luo Y, Yao X, Yuan J, Ding T, Gao Q. Preparation and drug controlled-release of polyion complex micelles as drug delivery systems. Colloids Surf B Biointerfaces. 2009;68:218–24.

    Article  CAS  Google Scholar 

  24. Jawanda M, Lai BFL, Kizhakkedathu JN, Ishihara K, Narain R. Linear and hyperbranched phosphorylcholine based homopolymers for blood biocompatibility. Polym Chem. 2013;4:3140–6.

    Article  CAS  Google Scholar 

  25. Haladjova E, Mountrichas G, Pispas S, Rangelov S. Poly(vinyl benzyl trimethylammonium chloride) homo and block copolymers complexation with DNA. J Phys Chem B. 2016;120:2586–95.

    Article  CAS  Google Scholar 

  26. Kim D, Matsuoka H, Saruwatari Y. Formation of sulfobetaine-containing entirely ionic PIC (polyion complex) micelles and their temperature responsivity. Langmuir. 2020;36:10130–7.

    Article  CAS  Google Scholar 

  27. Kim D, Matsuoka H, Yusa S, Saruwatari Y. Collapse behavior of polyion complex (PIC) micelles upon salt addition and reforming behavior by dialysis and its temperature responsivity. Langmuir. 2020;36:15485–92.

    Article  CAS  Google Scholar 

  28. Mitsukami Y, Donovan MS, Lowe AB, McCormick CL. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules. 2001;34:2248–56.

    Article  CAS  Google Scholar 

  29. Goto F, Ishihara K, Iwasaki Y, Katayama K, Enomoto R, Yusa S. Thermo-responsive behavior of hybrid core cross-linked polymer micelles with biocompatible shells. Polymer. 2011;52:2810–8.

    Article  CAS  Google Scholar 

  30. Chen Z, FitzGerald PA, Kobayashi Y, Ueno K, Watanabe M, Warr GG, et al. Micelle structure of novel diblock polyethers in water and two protic ionic liquids (EAN and PAN). Macromolecules. 2015;48:1843–51.

    Article  CAS  Google Scholar 

  31. Burchard W, Schmidt M, Stockmayer WH. Information on polydispersity and branching from combined quasi-elastic and integrated scattering. Macromolecules. 1980;13:1265–72.

    Article  CAS  Google Scholar 

  32. Burchard W. Static and dynamic light scattering from branched polymers and biopolymers. Adv Polym Sci. 2007;48:1–124.

    Google Scholar 

  33. Konishi T, Yoshizaki T, Yamakawa H. On the “universal constants” ρ and Φ of flexible polymers. Macromolecules. 2002;24:5614–22.

    Article  Google Scholar 

  34. Akcasu AZ, Han CC. Molecular weight and temperature dependence of polymer dimensions in solution. Macromolecules. 1979;12:276–80.

    Article  CAS  Google Scholar 

  35. Quintana JR, Jáñez MD, Villacampa M, Katime I. Diblock copolymer micelles in solvent binary mixtures. 1. Selective Solvent/precipitant Macromolecules. 1995;28:4139–43.

    Article  CAS  Google Scholar 

  36. Villacampa M, de Apodaca ED, Quintana JR, Katime I. Diblock copolymer micelles in solvent binary mixtures. 2. Selective solvent/good solvent Macromolecules. 2002;28:4144–9.

    Google Scholar 

  37. Nakai K, Ishihara K, Yusa S. Preparation of giant polyion complex vesicles (G-PICsomes) with polyphosphobetaine shells composed of oppositely charged diblock copolymers. Chem Lett. 2017;46:824–7.

    Article  CAS  Google Scholar 

  38. Ikemi M, Odagiri N, Tanaka S, Shinohara I, Chiba A. Hydrophobic domain structure of water-soluble block copolymer. 2. Transition phenomena of block copolymer micelles. Macromolecules. 1982;15:281–6.

    Article  CAS  Google Scholar 

  39. Sharker KK, Ohara Y, Shigeta Y, Ozoe S, Yusa S. Upper critical solution temperature (UCST) behavior of polystyrene-based polyampholytes in aqueous solution. Polymers. 2019;11:265.

    Article  Google Scholar 

  40. Nakahata R, Yusa SI. Preparation of water-soluble polyion complex (PIC) micelles covered with amphoteric random copolymer shells with pendant sulfonate and quaternary amino groups. Polymers. 2018;10:205.

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by KAKENHI grants (21H02005, 21K19931, 21H05027, 21H05535) from the Japan Society for the Promotion of Science (JSPS), JSPS Bilateral Joint Research Projects (JPJSBP120203509), the Cooperative Research Program of “Network Joint Research Center for Materials and Devices (20214044),” and MEXT Promotion of Distinctive Joint Research Center Program (JPMXP 0621467946). The authors would like to thank Enago for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin-ichi Yusa.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, T.T., Pham, T.D. & Yusa, Si. Polyion complex (PIC) micelles formed from oppositely charged styrene-based polyelectrolytes via electrostatic, hydrophobic, and π–π interactions. Polym J 54, 1091–1101 (2022). https://doi.org/10.1038/s41428-022-00659-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00659-3

Search

Quick links