Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Formation of a glyco-functionalized interface on polyethylene using a side-chain crystalline block copolymer with epoxide

Abstract

A side-chain crystalline block copolymer was applied for the chemical modification of polyethylene surfaces. A block copolymer with stearyl and epoxy groups was prepared by nitroxide-mediated living radical polymerization. This copolymer had a phase transition temperature of ~40 °C. When the side-chain crystalline block copolymer was immobilized on polyethylene, a polymeric layer with nucleophilic reactivity was formed. The layer thickness increased with increasing copolymer concentration. Galactoside ligands were added to the polymeric layer by the ring-opening addition reaction of the epoxide. The obtained glyco-functionalized interface exhibited specific protein binding; the polyethylene surface containing galactoside ligands was adsorbed to peanut agglutinin rather than wheat germ agglutinin.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Varki A. Biological roles of oligosaccharides: all of the theories are correct. Glycobiology. 1993;3:97–130.

    Article  CAS  PubMed  Google Scholar 

  2. Dwek RA. Glycobiology: toward understanding the function of sugars. Chem Rev. 1996;96:683–720.

    Article  CAS  PubMed  Google Scholar 

  3. Sharon N, Lis H. History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology. 2004;14:53R–62R.

    Article  CAS  PubMed  Google Scholar 

  4. Soto GE, Hultgren SJ. Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol. 1999;181:1059–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Johannes L, Römer W. Shiga toxins—from cell biology to biomedical applications. Nat Rev Micro. 2010;8:105–16.

    Article  CAS  Google Scholar 

  6. Lee CY, Lee TR. Carbohydrate-protein interactions: basis of glycobiology. Acc Chem Res. 1995;28:321–7.

    Article  CAS  Google Scholar 

  7. Choi S-K, Mammen M, Whitesides GM. Generation and in situ evaluation of libraries of poly(acrylic acid) presenting dialosides as side chains as polyvalent inhibitors of influenza-mediated hemagglutination. J Am Chem Soc. 1997;119:4103–11.

    Article  CAS  Google Scholar 

  8. Mammen M, Choi S-K, Whitesides GM. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew Chem, Int Ed. 1998;37:2754–94.

    Article  Google Scholar 

  9. Miura Y, Seto H, Fukuda T, Molecular recognition of glycopolymer interface. In: Baptista GR editor. An integrated view of the molecular recognition and toxinology—from analytical procedures to biomedical applications. London: IntechOpen; 2013. p. 455-70.

  10. Becer CR, Hartmann L. Glycopolymer code, London: Royal Society of Chemistry; 2015.

  11. Stine KJ. Carbohydrate nanotechnology, Hoboken: John Wiley & Sons; 2016.

  12. Seto H, Ogata Y, Murakami T, Hoshino Y, Miura Y. Selective protein separation using siliceous materials with a trimethoxysilane-containing glycopolymer. ACS Appl Mater Interfaces. 2012;4:411–7.

    Article  CAS  PubMed  Google Scholar 

  13. Seto H, Takara M, Yamashita C, Murakami T, Hasegawa T, Hoshino Y, et al. Surface modification of siliceous materials using maleimidation and various functional polymers synthesized by reversible addition fragmentation chain transfer polymerization. ACS Appl Mater Interfaces. 2012;4:5125–33.

    Article  CAS  PubMed  Google Scholar 

  14. Ogata Y, Seto H, Murakami T, Hoshino Y, Miura Y. Affinity separation of lectins using porous membranes immobilized with glycopolymer brushes containing mannose or N-acetyl-D-glucosamine. Membranes. 2013;3:169–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Seto H, Kamba S, Kondo T, Hasegawa S, Nashima S, Ehara Y, et al. Metal mesh device sensor immobilized with a trimethoxysilane-containing glycopolymer for label-free detection of proteins and bacteria. ACS Appl Mater Interfaces. 2014;6:13234–41.

    Article  CAS  PubMed  Google Scholar 

  16. Seto H, Harada M, Nagaura H, Taniguchi H, Murakami T, Kimura I, et al. Formation of glyco-functionalized interfaces for protein binding using polyphenolic glycoside. Carbohydr Res. 2020;492:108002.

    Article  CAS  PubMed  Google Scholar 

  17. Seto H, Harada M, Sakamoto H, Nagaura H, Murakami T, Kimura I, et al. Visual sensing of proteins using gold nanoparticles coated with polyphenolic glycoside. Adv Powder Technol. 2020;31:4129–33.

    Article  CAS  Google Scholar 

  18. Švorčík V, Kolářová K, Slepička P, Macková A, Novotná M, Hnatowicz V. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polym Degrad Stab. 2006;91:1219–25.

    Article  Google Scholar 

  19. Pascual M, Sanchis R, Sánchez L, García D, Balart R. Surface modification of low density polyethylene (LDPE) film using corona discharge plasma for technological applications. J Adhes Sci Technol. 2008;22:1425–42.

    Article  CAS  Google Scholar 

  20. Tsuneda S, Saito K, Furusaki S, Sugo T, Makuuichi K. Simple introduction of sulfonic acid group onto polyethylene by radiation-induced cografting of sodium styrenesulfonate with hydrophilic monomers. Ind Eng Chem Res. 1993;32:1464–70.

    Article  CAS  Google Scholar 

  21. Yao S. Crystalline supramolecular interaction of side chain crystalline polymer and their future. Kobunshi Ronbunshu. 2016;73:139–46.

    Article  CAS  Google Scholar 

  22. Miho Y, Hirai S, Nakano R, Sekiguchi H, Yao S. Modification of polyethylene using side-chain crystalline block copolymer and evaluation of hydrophilicity. Poly J. 2018;50:439–45.

    Article  CAS  Google Scholar 

  23. Hirai S, Ishimoto S, Phanthong P, Yao S. Development of surface properties of ultra-high-molecular-weight polyethylene film using side-chain crystalline block copolymers. J Polym Eng. 2020;40:231–6.

    Article  CAS  Google Scholar 

  24. Hirai S, Ishimoto S, Obuchi H, Yao S. Improving the adhesion of polyethylene surfaces using Side-Chain crystalline block copolymer. J Adhes Sci Technol. 2019;33:2567–78.

    Article  CAS  Google Scholar 

  25. Ishimoto S, Hirai S, Obuchi H, Yao S. Chemical surface modification of ultra-high-molecular-weight polyethylene fiber with side-chain crystalline block copolymers and the dyeing characteristics. J Fiber Sci Technol. 2019;75:132–9.

    Article  Google Scholar 

  26. Mellbring O, Øiseth SK, Krozer A, Lausmaa J, Hjertberg T. Spin coating and characterization of thin high-density polyethylene films. Macromolecules. 2001;34:7496–503.

    Article  CAS  Google Scholar 

  27. Sauerbrey G. Verwendung von schwingquarzen zur wägung dünner schichten und zur mikrowägung. Z Phys. 1959;155:206–22.

    Article  CAS  Google Scholar 

  28. Ebara Y, Itakura K, Okahata Y. Kinetic studies of molecular recognition based on hydrogen bonding at the air-water interface by using a highly sensitive quartz-crystal microbalance. Langmuir. 1996;12:5165–70.

    Article  CAS  Google Scholar 

  29. Matsuura K, Tsuchida A, Okahata Y, Akaike T, Kobayashi K. A quartz-crystal microbalance study of adsorption behaviors of artificial glycoconjugate polymers onto chemically modified gold surfaces and their interactions with lectins. Bull Chem Soc Jpn. 1998;71:2973–7.

    Article  CAS  Google Scholar 

  30. Toyoshima M, Oura T, Fukuda T, Matsumoto E, Miura Y. Biological specific recognition of glycopolymer-modified interfaces by RAFT living radical polymerization. Polym J. 2010;42:172–8.

    Article  CAS  Google Scholar 

  31. Seto H, Tono T, Nagaoka A, Yamamoto M, Hirohashi Y, Shinto H. Preparation and characterization of glycopolymers with biphenyl spacers via Suzuki coupling reaction. Org Biomol Chem. 2021;19:4474–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by JSPS KAKENHI (grant number 19K05042). This study was funded by the Shiraishi Scientific Research Fund of Fukuoka University (No. SK2001) and the Central Research Institute of Fukuoka University (Nos. 165005, 175009, and 207103). We thank Nihon Kasei Co., Ltd. for providing the 4HBAGE. We thank Alkema Inc. for providing BlocBuilder® MA. XPS measurements were conducted by Dr. T. Murakami and Mr. I. Kimura of JAIST, supported by the Nanotechnology Platform Program (Molecule and Material Synthesis) of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. We are grateful for the assistance of Prof. Y. Miura (Kyushu University) in providing access to the UV–Vis spectrophotometer. We thank Mr. Y. Nagano and Mr. S. Aso for their cooperation in the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirokazu Seto.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seto, H., Yasunaga, M., Mawatari, N. et al. Formation of a glyco-functionalized interface on polyethylene using a side-chain crystalline block copolymer with epoxide. Polym J 54, 1103–1109 (2022). https://doi.org/10.1038/s41428-022-00652-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00652-w

This article is cited by

Search

Quick links