Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Recent advances in solution-processed organic and perovskite nanocrystal light-emitting devices

Abstract

This paper outlines recent progress in various solution-processed fluorescent polymer tandem organic light-emitting diodes (OLEDs), white phosphorescent tandem OLEDs, and perovskite nanocrystal (NC) LEDs. Tandem OLEDs, which comprise multiple light-emitting units stacked in series through a charge-generation layer, have attracted considerable attention for display applications owing to their high efficiencies and long operational lifetimes. In addition, a nine-layered tandem OLED structure is produced by using a solution process, wherein appropriate coating solvents are carefully selected for each layer. In recent years, metal halide perovskite NCs have also been considered promising light-emitting materials owing to their excellent optoelectrical properties. Herein, the perovskite NC surface was modified by reprecipitation and gel permeation chromatography purification processes, which resulted in enhanced optoelectrical and LED performance.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. Kido J, Kimura M, Nagai K. Multilayer white light-emitting organic electroluminescent device. Science. 1995;267:1332.

    CAS  PubMed  Article  Google Scholar 

  2. Sun Y, Giebink NC, Kanno H, Ma B, Thompson ME, Forrest SR. Management of singlet and triplet excitons for efficient white organic light-emitting devices. Nature. 2006;440:908.

    CAS  PubMed  Article  Google Scholar 

  3. Reineke S, Lindner F, Schwartz G, Seidler N, Walzer K, Lussem B, et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature. 2009;459:234.

    CAS  PubMed  Article  Google Scholar 

  4. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature. 2012;492:234.

    CAS  PubMed  Article  Google Scholar 

  5. Meerheim R, Walzer K, Pfeiffer M, Leo K. Ultrastable and efficient red organic light emitting diodes with doped transport layers. Appl Phys Lett. 2006;89:061111.

    Article  CAS  Google Scholar 

  6. Chiba T, Pu Y-J, Miyazaki R, Nakayama K, Sasabe H, Kido J. Ultra-high efficiency by multiple emission from stacked organic light-emitting devices. Org Electron. 2011;12:710.

    CAS  Article  Google Scholar 

  7. Chiba T, Pu YJ, Kido J. Organic light-emitting devices with tandem structure. In: Wai-Yeung W, Olivucci M, editors. Topics in current chemistry. Switzerland: Springer international publishing AG; 2016. p. 374.

  8. Meyer J, Kroger M, Hamwi S, Gnam F, Riedl T, Kowalsky W, et al. Charge generation layers comprising transition metal-oxide/organic interfaces: electronic structure and charge generation mechanism. Appl Phys Lett. 2010;96:193302.

    Article  CAS  Google Scholar 

  9. Liao LS, Klubek KP, Tang CW. High-efficiency tandem organic light-emitting diodes. Appl Phys Lett. 2004;84:167.

    CAS  Article  Google Scholar 

  10. Kanno H, Giebink NC, Sun YR, Forrest SR. Stacked white organic light-emitting devices based on a combination of fluorescent and phosphorescent emitters. Appl Phys Lett. 2006;89:023503.

    Article  CAS  Google Scholar 

  11. Lee S, Shin H, Kim JJ. High-efficiency orange and tandem white organic light-emitting diodes using phosphorescent dyes with horizontally oriented emitting dipoles. Adv Mater. 2014;26:5864.

    CAS  PubMed  Article  Google Scholar 

  12. Zhang Y, Lee J, Forrest SR. Tenfold increase in the lifetime of blue phosphorescent organic light-emitting diodes. Nat Commun. 2014;5:5008.

    CAS  PubMed  Article  Google Scholar 

  13. Chiba T, Pu Y-J, Sasabe H, Kido J, Yang Y. Solution-processed organic light-emitting devices with two polymer light-emitting units connected in series by a charge-generation layer. J Mater Chem. 2012;22:22769.

    CAS  Article  Google Scholar 

  14. Aizawa N, Pu Y-J, Watanabe M, Chiba T, Ideta K, Toyota N, et al. Solution-processed multilayer small-molecule light-emitting devices with high-efficiency white-light emission. Nat Commun. 2014;5:5756.

    PubMed  Article  Google Scholar 

  15. Chiba T, Pu YJ, Takahashi S, Sasabe H, Kido J. Lithium phenolate complexes with a pyridine-containing polymer for solution-processable electron injection layers in PLEDs. Adv Funct Mater. 2014;24:6038.

    CAS  Article  Google Scholar 

  16. Aizawa N, Pu Y-J, Chiba T, Kawata S, Sasabe H, Kido J. Instant low-temperature cross-linking of poly(N-vinylcarbazole) for solution-processed multilayer blue phosphorescent organic light-emitting devices. Adv Mater. 2014;26:7543.

    CAS  PubMed  Article  Google Scholar 

  17. Chiba T, Pu YJ, Hirasawa M, Masuhara A, Sasabe H, Kido J. Solution-processed inorganic-organic hybrid electron injection layer for polymer light-emitting devices. ACS Appl Mater Interfaces. 2012;4:6104.

    CAS  PubMed  Article  Google Scholar 

  18. Pu YJ, Morishita N, Chiba T, Ohisa S, Igarashi M, Masuhara A, et al. Efficient electron injection by size- and shape-controlled zinc oxide nanoparticles in organic light-emitting devices. ACS Appl Mater Interfaces. 2015;7:25373.

    CAS  PubMed  Article  Google Scholar 

  19. Pu Y-J, Chiba T, Ideta K, Takahashi S, Aizawa N, Hikichi T, et al. Fabrication of organic light-emitting devices comprising stacked light-emitting units by solution-based processes. Adv Mater. 2015;27:1327.

    CAS  PubMed  Article  Google Scholar 

  20. Chiba T, Pu Y-J, Kido J. Solution-processed white phosphorescent tandem organic light-emitting devices. Adv Mater. 2015;27:4681.

    CAS  PubMed  Article  Google Scholar 

  21. Ohisa S, Takahashi T, Igarashi M, Fukuda H, Hikichi T, Komatsu R, et al. An indolocarbazole-based thermally activated delayed fluorescence host for solution-processed phosphorescent tandem organic light-emitting devices exhibiting extremely small efficiency roll-off. Adv Funct Mater. 2019;29:1808022.

  22. Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R, Hendon CH, et al. Nanocrystals of cesium lead halide perovskites (CsPbX(3), X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015;15:3692.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Nedelcu G, Protesescu L, Yakunin S, Bodnarchuk MI, Grotevent MJ, Kovalenko MV. Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015;15:5635.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Akkerman QA, D’Innocenzo V, Accornero S, Scarpellini A, Petrozza A, Prato M, et al. Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions. J Am Chem Soc. 2015;137:10276.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Pan J, Quan LN, Zhao YB, Peng W, Murali B, Sarmah SP, et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater. 2016;28:8718.

    CAS  PubMed  Article  Google Scholar 

  26. Chiba T, Hayashi Y, Ebe H, Hoshi K, Sato J, Sato S, et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat Photonics. 2018;12:681.

    CAS  Article  Google Scholar 

  27. Chiba T, Hoshi K, Pu YJ, Takeda Y, Hayashi Y, Ohisa S, et al. High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment. ACS Appl Mater Interfaces. 2017;9:18054.

    CAS  PubMed  Article  Google Scholar 

  28. Hoshi K, Chiba T, Sato J, Hayashi Y, Takahashi Y, Ebe H, et al. Purification of perovskite quantum dots using low-dielectric-constant washing solvent “diglyme” for highly efficient light-emitting devices. ACS Appl Mater Interfaces. 2018;10:24607.

    CAS  PubMed  Article  Google Scholar 

  29. Ebe H, Takahashi Y, Sato J, Chiba T, Ohisa S, Kido J. Interfacial engineering of perovskite quantum-dot light-emitting devices using alkyl ammonium salt layer. J Photopolym Sci Technol. 2018;31:329.

    CAS  Article  Google Scholar 

  30. Chiba T, Ishikawa S, Sato J, Takahashi Y, Ebe H, Ohisa S, et al. Blue perovskite nanocrystal light-emitting devices via the ligand exchange with adamantane diamine. Adv Opt Mater. 2020;8:2000289.

  31. Ebe H, Chiba T, Ohisa S, Kido J. Gel permeation chromatography purification process for highly efficient perovskite nanocrystal light-emitting devices. J Photopolym Sci Technol. 2020;33:393.

    CAS  Article  Google Scholar 

  32. Chiba T, Sato J, Ishikawa S, Takahashi Y, Ebe H, Sumikoshi S, et al. Neodymium chloride-doped perovskite nanocrystals for efficient blue light-emitting devices. ACS Appl Mater Interfaces. 2020;12:53891.

    CAS  Article  Google Scholar 

  33. Chiba T, Takahashi Y, Sato J, Ishikawa S, Ebe H, Tamura K, et al. Surface crystal growth of perovskite nanocrystals via postsynthetic lead(II) bromide treatment to increase the colloidal stability and efficiency of light-emitting devices. ACS Appl Mater Interfaces. 2020;12:45574.

    CAS  PubMed  Article  Google Scholar 

  34. Chen WC, Fang YH, Chen LG, Liang FC, Yan ZL, Ebe H, et al. High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands. Chem Eng J. 2021;414:128866.

  35. Yan ZL, Benas JS, Chueh CC, Chen WC, Liang FC, Zhang ZX, et al. Stable blue perovskite light-emitting diodes achieved by optimization of crystal dimension through zinc bromide addition. Chem Eng J. 2021;414:128774.

  36. Vashishtha P, Nutan GV, Griffith BE, Fang Y, Giovanni D, Jagadeeswararao M, et al. Cesium copper iodide tailored nanoplates and nanorods for blue, yellow, and white emission. Chem Mater. 2019;31:9003.

    CAS  Article  Google Scholar 

  37. Zhou Y, Fuentes-Hernandez C, Shim J, Meyer J, Giordano AJ, Li H, et al. A universal method to produce low-work function electrodes for organic electronics. Science. 2012;336:327.

    CAS  PubMed  Article  Google Scholar 

  38. Kim YH, Han TH, Cho H, Min SY, Lee CL, Lee TW. Polyethylene imine as an ideal interlayer for highly efficient inverted polymer light-emitting diodes. Adv Funct Mater. 2014;24:3808.

    CAS  Article  Google Scholar 

  39. Hofle S, Schienle A, Bruns M, Lemmer U, Colsmann A. Enhanced electron injection into inverted polymer light-emitting diodes by combined solution-processed zinc oxide/polyethylenimine interlayers. Adv Mater. 2014;26:2750.

    PubMed  Article  CAS  Google Scholar 

  40. Chiba T, Pu YJ, Ide T, Ohisa S, Fukuda H, Hikichi T, et al. Addition of lithium 8-quinolate into polyethylenimine electron-injection layer in OLEDs: not only reducing driving voltage but also improving device lifetime. ACS Appl Mater Interfaces. 2017;9:18113.

    CAS  PubMed  Article  Google Scholar 

  41. Umemoto K, Ebe H, Sato R, Enomoto J, Oshita N, Kimura T, et al. Simple production of highly luminescent organometal halide perovskite nanocrystals using ultrasound-assisted bead milling. ACS Sustain Chem Eng. 2020;8:16469.

    CAS  Article  Google Scholar 

  42. Shi H, Liu C, Jiang Q, Xu J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater. 2015;1:1500017.

    Article  CAS  Google Scholar 

  43. Ahn S, Kim YH, Kim S, Park J, Li N, Heo JM, et al. Synergistic molecular engineering of hole‐injecting conducting polymers overcomes luminescence quenching in perovskite light‐emitting diodes. Adv Optical Mater. 2021;9:2100646.

    CAS  Article  Google Scholar 

  44. Ho S, Liu S, Chen Y, So F. Review of recent progress in multilayer solution-processed organic light-emitting diodes. J Photonics Energy. 2015;5:057611.

    Article  CAS  Google Scholar 

  45. Wang S, Zhang H, Zhang B, Xie Z, Wong W-Y. Towards high-power-efficiency solution-processed OLEDs: material and device perspectives. Mater Sci Eng: R: Rep. 2020;140:100547.

    Article  Google Scholar 

  46. Wang J, Wang N, Jin Y, Si J, Tan ZK, Du H, et al. Interfacial control toward efficient and low‐voltage perovskite light‐emitting diodes. Adv Mater. 2015;27:2311.

    CAS  PubMed  Article  Google Scholar 

  47. Woo S-J, Kim JS, Lee T-W. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nat Photonics. 2021;15:630.

    CAS  Article  Google Scholar 

  48. Ye F, Shan Q, Zeng H, Choy WC. Operational and spectral stability of perovskite light-emitting diodes. ACS Energy Lett. 2021;6:3114.

    CAS  Article  Google Scholar 

  49. Mak CH, Huang X, Liu R, Tang Y, Han X, Ji L, et al. Recent progress in surface modification and interfacial engineering for high-performance perovskite light-emitting diodes. Nano Energy. 2020;73:104752.

    CAS  Article  Google Scholar 

  50. Cho SH, Kim EH, Jeong B, Lee JH, Song G, Hwang I, et al. Solution-processed electron-only tandem polymer light-emitting diodes for broad wavelength light emission. J Mater Chem C. 2017;5:110.

    CAS  Article  Google Scholar 

  51. Xu J, Peng F, Hu Z, Yu L, Huang F, Yang W, et al. Efficient tandem polymer light-emitting diodes with PTPA-P/ZnO as the charge generation layer. J Mater Chem C. 2019;7:8003.

    CAS  Article  Google Scholar 

  52. Wu J-Y, Chen S-A. Development of a highly efficient hybrid white organic-light-emitting diode with a single emission layer by solution processing. ACS Appl Mater Interfaces. 2018;10:4851.

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. Junji Kido, all the members of our lab, and collaborators for their support. The author would also like to express appreciation for a Grant-in-Aid for Scientific Research C (20K05639) from the Japan Society for the Promotion of Science (JSPS), the Strategic International Collaborative Research Program (JPMJSC2111) of the Japan Science and Technology Agency (JST), and the Extensive Support for Young Promising Researchers from the New Energy and Industrial Technology Development Organization (NEDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Chiba.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chiba, T. Recent advances in solution-processed organic and perovskite nanocrystal light-emitting devices. Polym J 54, 969–976 (2022). https://doi.org/10.1038/s41428-022-00640-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-022-00640-0

Search

Quick links